Resonances and discrete spectrum of the Laplace operator on hyperbolic surfaces
- Authors: Popov D.A.1
-
Affiliations:
- Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology
- Issue: Vol 89, No 5 (2025)
- Pages: 165-180
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/331264
- DOI: https://doi.org/10.4213/im9649
- ID: 331264
Cite item
Abstract
on a non-compact hyperbolic Riemann surface of finite measure is studied.
A sufficient condition for the discrete spectrum to be infinite is obtained.
It is shown that this condition holds near the point
Keywords
About the authors
Dmitrii Aleksandrovich Popov
Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology
Email: popov-kupavna@yandex.ru
Doctor of physico-mathematical sciences, Senior Researcher
References
- P. Sarnak, “Spectra of hyperbolic surfaces”, Bull. Amer. Math. Soc. (N.S.), 40:4 (2003), 441–478
- H. Iwaniec, Introduction of the spectral theory of automorphic forms, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1995, xiv+247 pp.
- D. A. Hejhal, “The Selberg trace formula and the Riemann zeta function”, Duke Math. J., 43:3 (1976), 441–482
- D. A. Hejhal, The Selberg trace formula for $operatorname{PSL}(2,mathbb{R})$, v. 2, Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983, viii+806 pp.
- A. Selberg, Harmonic analysis, 2. Teil, Vorlesungsniederschrift, Göttingen, 1954, 33 pp.
- A. B. Venkov, “On essentially cuspidal noncongruence subgroups of $operatorname{PSL}(2,mathbb{R})$”, J. Funct. Anal., 92:1 (1990), 1–7
- S. A. Wolpert, “Disappearance of cusp forms in special families”, Ann. of Math. (2), 139:2 (1994), 239–291
- Wenzhi Luo, “Nonvanishing of $L$-values and the Weyl law”, Ann. of Math. (2), 154:2 (2001), 477–502
- A. Selberg, “Remarks on the distribution of poles of Eisenstein series”, Ferschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann Science Press of Israel, Jerusalem, 1990, 251–278
- W. Müller, “Spectral geometry and scattering theory for certain complete surfaces of finite volume”, Invent. Math., 109:2 (1992), 265–305
- R. S. Phillips, P. Sarnak, “On cups form for co-finite subgroups of $PSL(2,mathbb{R})$”, Invent. Math., 80:2 (1985), 339–364
Supplementary files
