Resonances and discrete spectrum of the Laplace operator on hyperbolic surfaces
- 作者: Popov D.A.1
-
隶属关系:
- Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology
- 期: 卷 89, 编号 5 (2025)
- 页面: 165-180
- 栏目: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/331264
- DOI: https://doi.org/10.4213/im9649
- ID: 331264
如何引用文章
详细
on a non-compact hyperbolic Riemann surface of finite measure is studied.
A sufficient condition for the discrete spectrum to be infinite is obtained.
It is shown that this condition holds near the point
作者简介
Dmitrii Popov
Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology
Email: popov-kupavna@yandex.ru
Doctor of physico-mathematical sciences, Senior Researcher
参考
- P. Sarnak, “Spectra of hyperbolic surfaces”, Bull. Amer. Math. Soc. (N.S.), 40:4 (2003), 441–478
- H. Iwaniec, Introduction of the spectral theory of automorphic forms, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1995, xiv+247 pp.
- D. A. Hejhal, “The Selberg trace formula and the Riemann zeta function”, Duke Math. J., 43:3 (1976), 441–482
- D. A. Hejhal, The Selberg trace formula for $operatorname{PSL}(2,mathbb{R})$, v. 2, Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983, viii+806 pp.
- A. Selberg, Harmonic analysis, 2. Teil, Vorlesungsniederschrift, Göttingen, 1954, 33 pp.
- A. B. Venkov, “On essentially cuspidal noncongruence subgroups of $operatorname{PSL}(2,mathbb{R})$”, J. Funct. Anal., 92:1 (1990), 1–7
- S. A. Wolpert, “Disappearance of cusp forms in special families”, Ann. of Math. (2), 139:2 (1994), 239–291
- Wenzhi Luo, “Nonvanishing of $L$-values and the Weyl law”, Ann. of Math. (2), 154:2 (2001), 477–502
- A. Selberg, “Remarks on the distribution of poles of Eisenstein series”, Ferschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann Science Press of Israel, Jerusalem, 1990, 251–278
- W. Müller, “Spectral geometry and scattering theory for certain complete surfaces of finite volume”, Invent. Math., 109:2 (1992), 265–305
- R. S. Phillips, P. Sarnak, “On cups form for co-finite subgroups of $PSL(2,mathbb{R})$”, Invent. Math., 80:2 (1985), 339–364
补充文件
