Resonances and discrete spectrum of the Laplace operator on hyperbolic surfaces

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The spectrum of the Laplace operator
on a non-compact hyperbolic Riemann surface of finite measure is studied.
A sufficient condition for the discrete spectrum to be infinite is obtained.
It is shown that this condition holds near the point
$\Gamma_0(N)/H$, $N=p_1\cdots p_r$, of the Teichmüller space.

Sobre autores

Dmitrii Popov

Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology

Email: popov-kupavna@yandex.ru
Doctor of physico-mathematical sciences, Senior Researcher

Bibliografia

  1. P. Sarnak, “Spectra of hyperbolic surfaces”, Bull. Amer. Math. Soc. (N.S.), 40:4 (2003), 441–478
  2. H. Iwaniec, Introduction of the spectral theory of automorphic forms, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1995, xiv+247 pp.
  3. D. A. Hejhal, “The Selberg trace formula and the Riemann zeta function”, Duke Math. J., 43:3 (1976), 441–482
  4. D. A. Hejhal, The Selberg trace formula for $operatorname{PSL}(2,mathbb{R})$, v. 2, Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983, viii+806 pp.
  5. A. Selberg, Harmonic analysis, 2. Teil, Vorlesungsniederschrift, Göttingen, 1954, 33 pp.
  6. A. B. Venkov, “On essentially cuspidal noncongruence subgroups of $operatorname{PSL}(2,mathbb{R})$”, J. Funct. Anal., 92:1 (1990), 1–7
  7. S. A. Wolpert, “Disappearance of cusp forms in special families”, Ann. of Math. (2), 139:2 (1994), 239–291
  8. Wenzhi Luo, “Nonvanishing of $L$-values and the Weyl law”, Ann. of Math. (2), 154:2 (2001), 477–502
  9. A. Selberg, “Remarks on the distribution of poles of Eisenstein series”, Ferschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann Science Press of Israel, Jerusalem, 1990, 251–278
  10. W. Müller, “Spectral geometry and scattering theory for certain complete surfaces of finite volume”, Invent. Math., 109:2 (1992), 265–305
  11. R. S. Phillips, P. Sarnak, “On cups form for co-finite subgroups of $PSL(2,mathbb{R})$”, Invent. Math., 80:2 (1985), 339–364

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Popov D.A., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).