Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 89, No 4 (2025)

Articles

Development of the new approach for existence of bounded solutions for point-type functional differential equations

Beklaryan L.A.

Abstract

This paper is a continuations of the studies of [1] and [2] on existence of periodic bounded solutions for point-type functional differential equations, where deviations of the argument are defined in terms of a cyclic group of shifts on the real line. We prove an existence theorem for a bounded solution for equations in which the deviations of the argument are given by elements of a finitely generated group of orientation preserving diffeomorphisms of the real line.

Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 2025;89(4):3-31
pages 3-31 views

On lattices in Lie groups of general type and some applications

Gorbatsevich V.V.

Abstract

The article considers discrete uniform subgroups in Lie groups and their intersections with some types of Lie subgroups. The results obtained are applied to the study of fundamental groups of compact homogeneous spaces and the topological structure of such spaces.

Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 2025;89(4):32-53
pages 32-53 views

On long-time asymptotics of solution to the non-local Lakshmanan–Porsezian–Daniel equation with step-like initial data

Zhou W., Tian S., Zhang X.

Abstract

The non-linear steepest descent method is employed to study the long-time asymptotics of solution to the non-local Lakshmanan–Porsezian–Daniel equation with step-like initial data$$q(x,0)=q_0(x)\to\begin{cases}0, &x\to-\infty,A, &x\to+\infty,\end{cases}$$where $A$ is an arbitrary positive constant. We first construct the basic Riemann–Hilbert (RH) problem. After that, to eliminate the influence of singularities, we use the Blaschke–Potapov factor to deform the original RH problem into a regular RH problem which can be clearly solved. Then different asymptotic behaviors on the whole $(x,t)$-plane are analyzed in detail. In the region $(x/t)^2<1/(27\gamma)$ with $\gamma>0$, there are three real saddle points due to which the asymptotic behaviors have a more complicated error term. We prove that the asymptotic solution constructed by the leading and error terms depends on the values of $\operatorname{Im}v(-\lambda_j)$, $j=1,2,3$, where $v(\lambda_j) =-(1/(2\pi))\ln|1+r_1(\lambda_j)r_2(\lambda_j)|-(i/(2\pi))\Delta(\lambda_j)$, $\Delta(\lambda_j)=\int_{-\infty}^{\lambda_j}d \arg(1+r_1(\zeta)r_2(\zeta))$, $r_i(\xi)$, $i=1,2$, are the reflection coefficients and $\lambda_j$ are the saddle points of thephase function $\theta(\xi,\mu)$. Besides, the leading term is characterized by parabolic cylinder functions and satisfies boundary conditions. In the region $(x/t)^2>1/(27\gamma)$ with $\gamma>0$, there are one real and two conjugate complex saddle points. Based on the positions of these points, we improve the extension forms of the jump contours and successfully obtain the large-time asymptotic results of the solution in this case.

Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 2025;89(4):54-110
pages 54-110 views

A sample iterated small cancellation theory for groups of Burnside type

Lysenok I.G.

Abstract

We develop yet another technique to present the free Burnside group $B(m,n)$ of odd exponent $n$ with $m\ge2$ generators as a group satisfying a certain iterated small cancellation condition. Using the approach, we provide a reasonably accessible proof that $B(m,n)$ is infinite with a moderate bound $n > 2000$ on the odd exponent $n$.

Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 2025;89(4):111-218
pages 111-218 views

A further sufficient condition for the determinantal conjecture

Shitov Y.N.

Abstract

Let $A$, $B$ be $n\times n$ normal matrices with eigenvalues $(a_1,…,a_n)$, $(b_1,…,b_n)$, respectively. We show that $\det(A+B)$ lies in the convex hull ofψSn{i=1n(ai+bψi)}\bigcup_{\psi\in\mathcal{S}_n}\{\prod_{i=1}^n(a_i+b_{\psi_i})\}if all eigenvalues of $A$, $B$ are real, except for three eigenvalues of $B$.

Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 2025;89(4):219-226
pages 219-226 views

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).