A further sufficient condition for the determinantal conjecture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $A$, $B$ be $n\times n$ normal matrices with eigenvalues $(a_1,…,a_n)$, $(b_1,…,b_n)$, respectively. We show that $\det(A+B)$ lies in the convex hull ofψSn{i=1n(ai+bψi)}\bigcup_{\psi\in\mathcal{S}_n}\{\prod_{i=1}^n(a_i+b_{\psi_i})\}if all eigenvalues of $A$, $B$ are real, except for three eigenvalues of $B$.

About the authors

Yaroslav Nikolaevich Shitov

Author for correspondence.
Email: yaroslav-shitov@yandex.ru
Doctor of physico-mathematical sciences, no status

References

  1. N. Bebiano, J. K. Merikoski, J. da Providência, “On a conjecture of G. N. de Oliveira on determinants”, Linear Multilinear Algebra, 20:2 (1987), 167–170
  2. N. Bebiano, J. da Providência, “Some remarks on a conjecture of de Oliveira”, Linear Algebra Appl., 102 (1988), 241–246
  3. N. Bebiano, J. F. Queiro, “The determinant of the sum of two normal matrices with prescribed eigenvalues”, Linear Algebra Appl., 71 (1985), 23–28
  4. N. Bebiano, G. Soares, “Three observations on the determinantal range”, Linear Algebra Appl., 401 (2005), 211–220
  5. N. Bebiano, Yiu Tung Poon, J. da Providência, “On $C$-$det$ spectral and $C$-$det$-convex matrices”, Linear Multilinear Algebra, 23:4 (1988), 343–351
  6. N. Bebiano, A. Kovačec, J. da Providência, “The validity of the Marcus–de Oliveira conjecture for essentially Hermitian matrices”, Linear Algebra Appl., 197/198 (1994), 411–427
  7. J. da Providência, N. Bebiano, “Matrices satisfying a conjecture of G. N. de Oliveira on determinants”, Linear Algebra Appl., 78 (1986), 187–198
  8. S. W. Drury, “Essentially Hermitian matrices revisited”, Electron. J. Linear Algebra, 15 (2006), 285–296
  9. S. W. Drury, “OMC for scalar multiples of unitaries”, Linear Algebra Appl., 422:1 (2007), 318–325
  10. G. de Oliveira, “Normal matrices (research problem)”, Linear Multilinear Algebra, 12:2 (1982), 153–154
  11. M. Fiedler, “Bounds for the determinant of the sum of Hermitian matrices”, Proc. Amer. Math. Soc., 30 (1971), 27–31
  12. S. Fisk, “A very short proof of Cauchy's interlace theorem”, Amer. Math. Monthly, 112:2 (2005), 118
  13. Huajun Huang, “A survey of the Marcus–de Oliveira бonjecture”, Advances in algebra, SRAC 2017 (Mobile, AL, 2017), Springer Proc. Math. Stat., 277, Springer, Cham, 2019, 169–181
  14. A. Kovačec, “On a conjecture of Marcus and de Oliveira”, Linear Algebra Appl., 201 (1994), 91–97
  15. A. Kovačec, “The Marcus–de Oliveira conjecture, bilinear forms, and cones”, Linear Algebra Appl., 289:1-3 (1999), 243–259
  16. Chi-Kwong Li, Yiu-Tung Poon, Nung-Sing Sze, “Ranks and determinants of the sum of matrices from unitary orbits”, Linear Multilinear Algebra, 56:1-2 (2008), 105–130
  17. M. Marcus, “Derivations, Plücker relations, and the numerical range”, Indiana Univ. Math. J., 22:12 (1972/73), 1137–1149
  18. J. K. Merikoski, A. Virtanen, “Some notes on de Oliveira's determinantal conjecture”, Linear Algebra Appl., 121 (1989), 345–352
  19. J. K. Merikoski, A. Virtanen, “Some further notes on the Marcus–de Oliveira determinantal conjecture”, Linear Algebra Appl., 187 (1993), 259–262
  20. Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials, London Math. Soc. Monogr. (N.S.), 26, The Clarendon Press, Oxford Univ. Press, Oxford, 2002, xiv+742 pp.
  21. K. Rodtes, “A class of normal dilation matrices affirming the Marcus–de Oliveira conjecture”, Oper. Matrices, 15:1 (2021), 127–130
  22. N. Bebiano, J. P. da Providência, “Revisiting the Marcus–de Oliveira conjecture”, Mathematics, 13:5 (2025), 711, 9 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Shitov Y.N.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).