№ 1 (2024)
Статьи
Развитие полного лагранжева подхода для моделирования течений разреженных дисперсных сред (обзор)
Аннотация
Континуальные модели сред без собственного давления широко используются в различных разделах физики и механики, в том числе при исследовании многофазных течений для описания разреженной диспергированной фазы. В средах без давления возможно пересечение траекторий частиц среды, формирование “складок” и “сборок” фазового объема, а также появление каустик (огибающих траекторий частиц), вблизи которых плотность среды резко возрастает. В последние десятилетия явления кластеризации и аэродинамической фокусировки инерционной примеси в потоках газа и жидкости привлекают все большее внимание исследователей. Это обусловлено важностью учета неоднородностей концентрации примеси при описании распространения аэрозольных загрязнений в окружающей среде, механизмов роста капель в дождевых облаках, рассеивания излучения дисперсными включениями, инициирования детонации в двухфазных смесях, а также при решении задач двухфазной аэродинамики, интерпретации измерений, полученных методами LDV и PIV, и во многих других приложениях. Перечисленные проблемы стимулируют значительный рост числа публикаций, посвященных процессам аккумуляции и кластеризации инерционных частиц в потоках газа и жидкости. В рамках классических двухжидкостных моделей и стандартных эйлеровых подходов, предполагающих однозначность континуальных параметров сред, оказывается невозможным описать зоны многозначности полей скорости и сингулярности плотности среды в течениях с пересекающимися траекториями частиц. Одной из альтернатив является полный лагранжев подход, предложенный автором ранее. В последние годы этот подход получил дальнейшее развитие в комбинации с осредненными эйлеровыми и лагранжевыми (метод вихревых доменов) методами описания динамики несущей фазы. Такие комбинированные подходы позволили исследовать структуру локальных зон накопления инерционных частиц в вихревых, нестационарных и турбулентных потоках. Описаны базовые идеи полного лагранжева подхода, даны примеры полученных наиболее существенных результатов, иллюстрирующие уникальные возможности метода, и дан обзор основных направлений его развития применительно к нестационарным, вихревым и турбулентным течениям сред типа газ–частицы. Часть обсуждаемых идей и представленных результатов имеет более общее значение, поскольку применима и к другим моделям сред без собственного давления.
3-51
Аномальная интенсификация вихревого теплообмена при отрывном обтекании воздухом наклонной канавки на нагретом изотермическом участке пластины
Аннотация
Экспериментально и численно выявлена аномальная интенсификация теплообмена при турбулентном отрывном обтекании воздухом удлиненной канавки умеренной глубины на пластине, наклонённой под углом ٤٥° к набегающему потоку. Область исследования включала прямоугольный участок, нагретый до ١٠٠ °С насыщенным водяным паром. Число Рейнольдса менялось от ١٠3 до ٣×104. Методом градиентной теплометрии установлено двукратное — в сравнении с плоской пластиной – возрастание коэффициента теплоотдачи на дне канавки при числе Рейнольдса Re = 3×104. Относительное число Нуссельта для различных участков канавки определялось как в ходе физического эксперимента, так и расчетом на основе RANS-подхода с применением многоблочных вычислительных технологий и SST-модели в пакете VP٢/٣. Результаты удовлетворительно совпали в турбулентном режиме течения при Re = (5, 10 и 30)×103.
52-62
Диффузионная устойчивость кавитационного пузырька в жидком микровключении под действием внешней вынуждающей силы
Аннотация
Рассматривается задача диффузионной устойчивости одиночного кавитационного пузырька в сферической ячейке жидкости (жидком микровключении), окруженной бесконечным упругим твердым телом. В качестве внешней вынуждающей силы используется периодическое во времени давление в твердом теле вдали от ячейки жидкости, которое инициирует колебания пузырька, сопровождающиеся процессом диффузии газа в системе пузырь–в–ячейке. Использовано инженерное приближение, согласно которому увеличение/уменьшение пузырька рассматривается в среднем в предположении, что за период внешнего воздействия масса газа в пузырьке заметно не меняется. Разработанная теория предсказывает существование устойчиво осциллирующих пузырьков в ограниченной жидкости под действием внешней вынуждающей силы. Выявлены три возможных режима диффузии: 1) полное растворение пузырька, 2) частичное растворение пузырька и 3) частичный рост пузырька; последние два режима соответствуют диффузионной устойчивости в системе пузырь–в–ячейке. Проведено параметрическое исследование влияния концентрации газа, растворенного в жидкости, на результирующий устойчивый размер пузырька. Полученные результаты сравниваются с результатами для случая устойчивых колебаний пузырька в звуковом поле давления в бесконечной жидкости. Теоретические выводы могут быть использованы для совершенствования современных приложений ультразвуковых технологий.
63-76
Диагностика ионизационных процессов в углеводородном пламени с использованием вольтамперных характеристик
Аннотация
Рассматривается возможность оценки ионизационных параметров высокотемпературных газовых смесей, образующихся в результате процессов горения, на основе вольтамперных характеристик, измеренных с помощью электродов, создающих в исследуемых средах внешнее электрическое поле.
77-82
Анализ структуры течения в сверхзвуковом канале с каверной
Аннотация
Представлены результаты численного исследования сверхзвукового канала с каверной. Рассчитанные спектры колебаний анализируются с использованием быстрого преобразования Фурье. В полученном периодическом автоколебательном режиме можно выделить два типа колебательных мод. Первый тип мод соответствует акустическим колебаниям, вызванных прохождением звуковых волн вдоль каверны и рассчитанных с помощью модифицированной формулы Росситера. Второй тип мод соответствует частотам расходных колебаний, которые вызваны массообменном между каверной и внешним потоком. Показано изменение структуры течения при подаче топлива перед каверной. Активное горение происходит в слое смешения топлива и кислорода из воздуха. Картина течения демонстрирует возникновение неустойчивости Кельвина–Гельмгольца на границе раздела основного потока и прореагировавшего газа. Показано, что увеличение давления подаваемого топлива приводит к уменьшению частоты колебаний и увеличению характерного размера колебаний.
83-90
Движение нагрузки по ледяному покрову при наличии слоя жидкости со сдвиговым течением
Аннотация
Исследовано поведение ледяного покрова на поверхности идеальной несжимаемой жидкости конечной глубины под действием движущейся прямолинейно с постоянной скоростью области давления при наличии в верхнем слое потока со сдвигом скорости. Предполагается, что в системе координат, движущейся вместе с нагрузкой, прогиб льда установившийся. Использован метод преобразования Фурье в рамках линейной теории волн. Исследованы критические скорости, прогиб ледяного покрова и волновые силы в зависимости от градиента скорости течения, толщины сдвигового слоя, направления движения и коэффициента сжатия.
99-111
Колебания жидкости в круговом цилиндре с возвышением на дне
Аннотация
В приближении длинных волн сформулирована и численно при использовании алгоритма ускоренной сходимости решена задача о стоячих волнах в круговом цилиндрическом сосуде с возвышением на дне. В результате проведенных расчетов с высокой точностью определена собственная частота основной волновой моды. Для сравнения теоретических результатов представлены новые экспериментальные данные по возбуждению стоячих поверхностных гравитационных волн в круговом цилиндрическом сосуде с параболическим и коническим возвышениями на дне. Показано совпадение рассчитанных и измеренных значений собственной частоты основной волновой моды в сосудах с профилированным дном.
91-98
Численное решение краевой задачи задачи для инерционно-гравитационных внутренних волн
Аннотация
Представлен численный расчет начально-краевой задачи для уравнения свободных инерционно-гравитационных внутренних волн в неограниченном бассейне постоянной глубины в приближении Буссинеска и наличии двумерного вертикально-неоднородного течения. Краевая задача для амплитуды вертикальной скорости содержит комплексные коэффициенты и решается как численным методом, так и по теории возмущений. На примере расчета декремента затухания внутренних волн и волновых потоков импульса показано, что точный численный расчет дает существенно лучшие оценки в сравнении с методом возмущений. В частности, при минимальном расхождении в дисперсионных кривых для обоих методов расчета мнимая часть частоты волны, интерпретируемая как декремент затухания, может различаться на два-три порядка. Вертикальные волновые потоки импульса сравнимы с турбулентными и, в том числе, могут превышать их, при этом результаты, полученные численным методом, почти на порядок меньше вычисленных методом теории возмущений.
112-122
Конические тела с волнообразным поперечным контуром, имеющие минимальное волновое сопротивление
Аннотация
Рассмотрена задача построения поперечного контура конического тела, имеющего минимальное волновое сопротивление в диапазоне сверхзвуковых скоростей, при условии сохранения длины и объема. За исходное тело принят конус, сделано предположение о локальности связи между изменениями геометрических параметров и давления на поверхности, и применена квадратичная аппроксимация. Найденное решение сопоставлено с результатами, полученными в рамках модели Ньютона, и предложено объединение этих решений на основе допущения о степенной зависимости между радиусом и производной радиуса по угловой координате. При этом выделяется класс контуров, у которых половинка цикла состоит из элемента с монотонным изменением радиуса и дуги окружности, и описывается заданием одного геометрического параметра — показателя степени. В рамках модели невязкого совершенного газа проведена прямая численная оптимизация формы поперечного контура и показана возможность уменьшения волнового сопротивления по сравнению со звездообразными телами, имеющими плоские грани.
123-130
Моделирование нестационарных аэродинамических характеристик профиля NACA 0015 по данным численного расчета обтекания
Аннотация
Исследуется возможность применения результатов численного моделирования для разработки приближенной феноменологической математической модели аэродинамики, пригодной для использования в задачах динамики, на примере нестационарного обтекания профиля NACA 0015 при колебаниях по углу атаки с различными частотами, амплитудами и средними углами атаки. Для этого решаются уравнения Рейнольдса в стационарной и нестационарной постановках с моделью турбулентности k–ω-SST. Проводится валидация результатов расчета путем сравнения с данными эксперимента. По данным расчета идентифицируется модель нормальной силы и продольного момента, сформулированная в рамках подхода с введением внутренней динамической переменной. Результаты моделирования сравниваются с расчетными и экспериментальными данными. Приводится сопоставление с традиционным подходом моделирования с помощью линейной нестационарной модели, использующей динамические производные.
131-144
Диффузионно-дрейфовая модель поверхностного тлеющего разряда в сверхзвуковом потоке газа
Аннотация
Двухмерная электрогазодинамическая задача об аномальном тлеющем разряде на поверхности острой пластины, обтекаемой сверхзвуковым потоком совершенного газа, решается с использованием системы уравнений Навье–Стокса для описания термогазодинамических процессов в пограничном слое и двухтемпературной двухжидкостной диффузионно-дрейфовой модели газоразрядной плазмы для определения электродинамической структуры разряда. Учитываются приэлектродные области пространственного заряда и внешняя электрическая цепь, состоящая из источника питания и омического сопротивления. Исследовано влияние поперечного к газовому потоку магнитного поля с индукцией до 0.03 Тл на структуру пограничного слоя и тлеющего разряда. Выполнено численное исследование электрогазодинамической структуры аномальных приповерхностных разрядов в широком диапазоне скоростей газового потока, М = 5–10, давлений в набегающем потоке, р = 0.6–5 Торр, напряжений на электродах и токов через разряды. Исследована электродинамическая структура газо-плазменного потока вблизи электродов и воздействие тлеющего разряда на распределение давления и температуры вдоль поверхности пластины.
145-162



