Anomalous intensification of vortex heat transfer in the case of separated air flow over an inclined groove in a hot isothermal region of a flat plate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Anomalous heat transfer intensification in turbulent separated air flow over a long groove of moderate depth made in a plate inclined at an angle of 45° to the freestream is revealed both experimentally and numerically. The region under investigation includes a rectangle heated to 100°C by saturated water vapor. The Reynolds number varied from 103 to 3×104. Using the gradient heatmetry the twofold increase, as compared with the case of a flat plate, of the heat transfer coefficient on the groove bottom is established at the Reynolds number Re = 3×104. The relative Nusselt number in different regions of the groove is determined both in the physical experiment and in the RANS calculations with the application of multiblock computational technologies and the SST model in the VP2/3 software package. The results are in good agreement in the turbulent flow regime at Re = (5, 10, and 30) ×103.

About the authors

S. А. Isaev

St. Petersburg State Marine Technical University; St. Petersburg State University of Civil Aviation

Author for correspondence.
Email: isaev3612@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg

S. Z. Sapozhnikov

Peter the Great St. Petersburg Polytechnic University

Email: isaev3612@yandex.ru
Russian Federation, St. Petersburg

D. V. Nikushchenko

St. Petersburg State Marine Technical University

Email: isaev3612@yandex.ru
Russian Federation, St. Petersburg

V. Yu. Mityakov

Peter the Great St. Petersburg Polytechnic University

Email: isaev3612@yandex.ru
Russian Federation, St. Petersburg

V. V. Seroshtanov

Peter the Great St. Petersburg Polytechnic University

Email: isaev3612@yandex.ru
Russian Federation, St. Petersburg

Е. B. Dubko

St. Petersburg State University of Civil Aviation

Email: isaev3612@yandex.ru
Russian Federation, St. Petersburg

References

  1. Isaev S., Gritckevich М., Leontiev А., Popov I. Abnormal enhancement of separated turbulent air flow and heat transfer in inclined single-row oval-trench dimples at the narrow channel wall // Acta Astronautica. 2019. Vol. 163 (part. A). P. 202–207.
  2. Исаев С.А. Генезис аномальной интенсификации отрывного течения и теплообмена в наклонных канавках на структурированных поверхностях // Изв. РАН. Механика жидкости и газа. 2022. № 5. С. 13–24.
  3. Исаев С.А. Аэрогидродинамические механизмы интенсификации физико-энергетических процессов на структурированных энергоэффективных поверхностях с вихревыми генераторами // Теплофизика и аэромеханика. 2023. Т. 30. № 1. С. 83–88.
  4. Isaev S.A., Schelchkov A.V., Leontiev A.I., Gortyshov Yu.F., Baranov P.A., Popov I.A. Tornado-like heat transfer enhancement in the narrow plane-parallel channel with the oval-trench dimple of fixed depth and spot area // Int. J. Heat and Mass Transfer. 2017. V. 109. P. 40–62.
  5. Исаев С.А., Гувернюк С.В., Никущенко Д.В., Судаков А.Г., Синявин А.А., Дубко Е.Б. Взаимосвязь аномальной интенсификации отрывного течения и экстраординарных перепадов давления в канавке на пластине при изменении угла наклона от 0 до 90° // Письма в ЖТФ. 2023. Т. 49. Вып. 15. С. 39–42.
  6. Зубин М.А., Зубков А.Ф. Структура отрывного обтекания цилиндрической каверны на стенке плоского канала // Механика жидкости и газа. 2022. № 1. С. 81–89.
  7. Isaev S., Leontiev A., Gritskevich M., Nikushchenko D., Guvernyuk S., Sudakov A., Chung K.-M., Tryaskin N., Zubin M., Sinyavin A. Development of energy efficient structured plates with zigzag arrangement of multirow inclined oval trench dimples // Int. J. Thermal Sciences. 2023. V. 184. № 107988.
  8. Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V. Heatmetry: The Science and practice of heat flux measurement. Springer International Publishing, 2020. 209 p.
  9. Seroshtanov V., Gusakov A. Gradient heatmetry and PIV investigation of heat transfer and flow near circular cylinders // Inventions. 2022. № 7(3). Р. 80. https://doi.org/10.3390/inventions7030080.
  10. Sapozhnikov S.Z., Mityakov V.Y., Mityakov A.V., Gusakov A.A., Zainullina E.R., Grekov M.A., Seroshtanov V.V., Bashkatov A., Babich A.Y., Pavlov A.V. Gradient heatmetry advances // Energies. 2020. № 13. P. 6194. https://doi.org/10.3390/en13236194.
  11. ISO/IEC Guide 98-1:2009 – Uncertainty of Measurement – Part 1: Introduction to the Expression of Uncertainty in Measurement.
  12. Isaev S.A., Baranov P.A., Usachov A.E. Multiblock computational technologies in the VP2/3 package on aerothermodynamics. LAP LAMBERT Academic Publishing, Saarbrucken, 2013. 316 p.
  13. Van Doormaal J.P., Raithby G.D. Enhancement of the SIMPLE method for predicting incompressible fluid flow // Numerical Heat Transfer. 1984. V. 7. P. 147–163.
  14. Menter F.R. Zonal two equation k–ω turbulence models for aerodynamic flows // AIAA Paper. 1993. № 93. P. 21.
  15. Leonard B.P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation // Comp. Meth. Appl. Mech. Eng. 1979. V. 19. № 1. P. 59–98.
  16. Van Leer B. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method // J. Comp. Phys. 1979. V. 32. P. 101–136.
  17. Rhie C.M., Chow W.L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation // AIAA J. 1983. V. 21. P. 1525–1532.
  18. Pascau A., Garcia N. Consistency of SIMPLEC scheme in collocated grids. V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010. Lisbon, Portugal, 2010. 12 p.
  19. Saad Y. Iterative methods for sparse linear systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003. 567 p.
  20. Demidov D. AMGCL: C++ library for solving large sparse linear systems with algebraic multigrid method. http://amgcl.readthedocs.org/.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies