Precise reconstruction of polarization quantum states under noisy measurement conditions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An accurate model for the reconstruction of polarization quantum states under noisy measurement conditions is developed. To ensure correct analysis of quantum state readout, a mathematical model of fuzzy measurements is applied. It is demonstrated that the proposed method significantly improves the fidelity of polarization state reconstruction taking into account quantum noise and decoherence processes.

Авторлар туралы

I. Golyshev

National Research University MIET; National Research Center “Kurchatov Institute” – Valiev Institute of Physics and Technology

Email: i.k.golyshev@gmail.com
Moscow, Russia; Moscow, Russia

N. Bogdanova

National Research University MIET; National Research Center “Kurchatov Institute” – Valiev Institute of Physics and Technology

Moscow, Russia; Moscow, Russia

Yu Bogdanov

National Research University MIET; National Research Center “Kurchatov Institute” – Valiev Institute of Physics and Technology

Moscow, Russia; Moscow, Russia

V. Lukichev

National Research Center “Kurchatov Institute” – Valiev Institute of Physics and Technology

Moscow, Russia

Әдебиет тізімі

  1. Богданов Ю.И. , Богданова Н.А., Лукичев В. Ф . Введение в квантовые информационные технологии. Москва: Техносфера, 2025. 468 с.
  2. Hoefler T., Häner T., Troyer M . Disentangling hype from practicality: On realistically achieving quantum advantage // Communications of the ACM, 2023. Vol. 66. № 5. P. 82–8 7.
  3. Toshio R., Akahoshi Y., Fujisaki J., et al . Practical quantum advantage on partially fault-tolerant quantum computer // Physical Review X, 2025. Vol. 15. № 2. P. 021057.
  4. Daley A.J., Bloch I., Kokail C., et al . Practical quantum advantage in quantum simulation // Nature, 2022. Vol. 607. № 7920. P. 66 7–676.
  5. Löschnauer C.M., Toba J.M., Hughes A.C., et al . Scalable, high-fidelity all-electronic control of trapped-ion qubits, arXiv preprint arXiv: 2407.07694, 2024.
  6. Arute F., Arya K., Babbush R., et al . Quantum supremacy using a programmable superconducting processor // Nature, 2019. Vol. 574. № 7779. P. 505–510.
  7. Wendin G., By lander J ., Quantum computer scales up by mitigating errors // Nature, 2023. Vol. 618. P. 462–463.
  8. Hémery K., Ghanem K., Crane E., Campbell S.L., et al . Measuring the Loschmidt amplitude for finite-energy properties of the Fermi-Hubbard model on an ion-trap quantum computer // PRX Quantum, 2024. Vol. 5. № 3. P. 030323.
  9. Aksenov M.A ., Zalivako I.V., Semerikov I.A ., et al . Realizing quantum gates with optically addressable Yb+ 171 ion qudits // Physical Review A, 2023. Vol. 107. № 5. P. 052612.
  10. Bluvstein D., Evered S.J., Geim A.A., et al . Logical quantum processor based on reconfigurable atom arrays // Nature, 2024. Vol. 626. № 7997. P. 58–65.
  11. Manetsch H.J., Nomura G., Bataille E., Leung K.H., Lv X., Endres M ., A tweezer array with 6100 highly coherent atomic qubits, arXiv preprint arXiv: 2403.12021, 2024.
  12. Gupta R.S. , Sundaresan N., Alexander T., et al . Encoding a magic state with beyond break-even fidelity // Nature, 2024. Vol. 625. № 7994. P. 259–263.
  13. Kim Y., Eddins A., Anand S., et al . Evidence for the utility of quantum computing before fault tolerance // Nature, 2023. Vol. 618. № 7965. P. 500–505.
  14. Harper R., Flammia S.T., Wallman J.J . Efficient learning of quantum noise // Nature Physics, 2020. Vol. 16. № 12. P. 1184–1188.
  15. Morvan A., Villalonga B., Mi X. et al . Phase transition in random circuit sampling // Nature, 2024. Vol. 634. № 8033. P. 328–333.
  16. Alexander K., Bahgat A., Benyamini A. et al . manufacturable platform for photonic quantum computing, arXiv preprint arXiv: 2404.17570, 2024.
  17. Shi S., Xu B., Zhang K. et al . High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source // Nature Communications, 2022. Vol. 13. № 1. P. 4454.
  18. Deng Y.H., Gu Y.C., Liu H.L. et al . Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage, Physical Review Lett ers , 2023. Vol. 131. № 15. P. 150601.
  19. Zhou X., Shen A., Hu S. et al . Towards Quantum-Native Communication Systems: New Developments, Trends, and Challenges, arXiv preprint arXiv: 2311.05239, 2023.
  20. Struchalin G.I., Pogorelov I.A., Straupe S.S. et al . Experimental adaptive quantum tomography of two-qubit states // Physical Review A, 2016 . Vol. 93. № 1. P. 012103.
  21. Bogdanov Yu.I., Dmitriev I.A., Banty sh B.I. et al . High-precision tomography of ion qubits based on registration of fluorescent photons // Laser Phys. Lett. 2023. Vol. 20, 065202.
  22. Bogdanov Yu.I., Bogdanova N.A., Kuznetsov Yu.A . et al . Precise Tomography of Qudits // Russian Microelectronics, 2023. Vol. 52. № 3. P. 135–143.
  23. Bogdanov Yu.I., Brida G., Bukeev I.D. et a . Statistical Estimation of Quantum Tomography Protocols Quality // Phys. Rev. A . 2011. Vol. 84. 042108. P. 19.
  24. Bantysh B .I., Bogdanov Yu.I., Bogdanova N.A., Kuznetsov Yu.A . Precise tomography of optical polarization qubits under conditions of chromatic aberration of quantum transformations // Laser Physics Letters, 2020. Vol. 17. № 3. P. 035205.
  25. Нильсен М., Чанг И . Квантовые вычисления и квантовая информация. М.: Мир, 2006. 824 с.
  26. Bogdanov Yu.I., Chernyavskiy A. Yu. , Holevo A.S., Lukichev V.F., Orlikovsky A. A . Mathematical models of quantum noise // International Conference Micro- and Nano-Electronics 2012. SPIE, 2013. Vol. 8700. P. 395–403.
  27. Zyczkowski K., Sommer s H.J ., Induced measures in the space of mixed quantum states // J. of Physics A: Mathematical and General, 2001. Vol. 34. № 35. P. 7111.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).