Simulation of a System of Nanoantennas Located in a TSV Channel as a System for Receiving and Transmitting Data

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of a theoretical study of the behavior of a system of nanophotonic devices, consisting of receiving and transmitting plasmonic metal antennas, are presented. Based on the finite element method, the main parameters of antennas located in the TSV channel and receiving a signal in the terahertz frequency range are calculated. The limiting range of signal transmission and the coefficient of its amplification are determined. Conclusions are drawn on the suitability of the presented configuration as a system for wireless data transmission and reception in three-dimensional integrated circuits.

Sobre autores

D. Serov

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences; MIREA–Russian Technological University

Email: d.serov589@gmail.com
Moscow, 117218 Russia; Moscow, 119454 Russia

I. Khorin

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: khorin@ftian.ru
Moscow, 117218 Russia

Bibliografia

  1. O’Connor I. Optical solutions for system-level interconnect, in: Proceedings of the 2004 International Workshop on System Level Interconnect Prediction, ACM.
  2. Shacham A., Bergman K., Carloni L.P. Photonic networks-on-chip for future generations of chip multiprocessors // IEEE Trans. Comput. 2008. V. 57(9). P. 1246–1260.
  3. Guo P., Hou W., Guo L., Yang Q., Ge Y., Liang H. Low insertion loss and non-blocking microring-based optical router for 3d optical network-on-chip // IEEE, Photon. J. 2018. V. 10(2). P. 1–10.
  4. Grani P., Bartolini S. Scalable path-setup scheme for all-optical dynamic circuit switched nocs in cache coherent cmps // ACM J. Emerg. Technol. Comput. Syst. 2018. V. 14(1). P. 12.
  5. Sarabandi K., Choi S. Design optimization of bowtie nanoantenna for high-efficiency thermophotovoltaics // Journal of Applied Physics. 2013. V. 114. № 21. P. 214303.
  6. Gadalla M.N., Abdel-Rahman M., Shamim A. Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification // Scientific reports. 2014. V. 4. P. 4270.
  7. Jiawei Marvin Chan, Kheng Chooi Lee, Chuan Seng Tan. Effects of Copper Migration on the Reliability of Through-Silicon Via (TSV) // IEEE Transactions on Device and Materials Reliability. V. 18. Is. 4. December 2018.
  8. Volakis J.L. Antenna Engineering Handbook, McGraw-Hill Education, 2006.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (793KB)
3.

Baixar (1MB)
4.

Baixar (2MB)
5.

Baixar (2MB)

Declaração de direitos autorais © Д.А. Серов, И.А. Хорин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies