Simulation of Silicon FETs with a Fully Enclosed Gate with a High-k Gate Dielectric

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The electrical and physical characteristics of a cylindrical silicon field-effect nanotransistor (FET) with a fully enclosed gate with Al2O3 and HfO2 gate oxide dielectrics are discussed. The numerical simulation results show that the use of high k dielectrics has a noticeable effect on all the main characteristics of the tran-sistor compared to silicon oxide. It follows from the data obtained that, when scaling, the degree of degradation of the electrical and physical characteristics of the transistor is correlated with the level of k: it decreases with the growth of k. This is due to the fact that the decrease in the effect of the gate on the characteristics of the transistor structure, especially in the subthreshold region, is partially compensated by the use of dielectrics with a high k.

Sobre autores

N. Masalskii

Scientific Research Institute for System Analysis, Russian Academy of Sciences

Autor responsável pela correspondência
Email: volkov@niisi.ras.ru
Moscow, 117218 Russia

Bibliografia

  1. Ferain I., Colinge C.A., Colinge J. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors // Nature. 2011. V. 479. P. 310–316.
  2. Taur Y., Ning T.H. Fundamentals of modern VLSI devices // Cambridge university press. 2013.
  3. Karbalaei M., Dideban D. A novel silicon on insulator MOSFET with an embedded heat pass path and source side channel doping // Superlattices and Microstructures. 2016. V. 90. P. 53–67.
  4. Anvarifard M.K., Orouji A.A. Proper electrostatic modulation of electric field in a reliable nano-SOI with a developed channel // IEEE Transactions on Electron Devices. 2018. V. 65. P. 1653–1657.
  5. Tomar G., Barwari A. Fundamental of electronic devices and circuits // Springer. 2019.
  6. International Technology Roadmap for Semiconductors (ITRS) Interconnect, 2020 Edition. [Online] Available: https://irds.ieee.org/editions/2020
  7. Karbalaei M., Dideban D. A scheme for silicon on insulator field effect transistor with improved performance using graphene // ECS Journal of Solid State Science and Technology. 2019. V. 8. P. M85–M92.
  8. Shaker A., El-Sabbagh M., El-Banna M.M. Influence of drain doping engineering on the ambipolar conduction and high-frequency performance of TFETs // IEEE Transactions on Electron Devices. 2017. V. 64. P. 3541–3547.
  9. Nagy D., Indalecio G., Garcia-Loureiro A.J., Elmessary M.A., Kalna K., Seoane N. FinFET versus gate-all-around nanowire FET: performance, scaling, and variability // IEEE Journal of the Electron Devices Society. 2018. V. 6. P. 332–40.
  10. Narang R., Saxena M., Gupta R.S., Gupta M. Drain current model for a gate all around (GAA) p–n–p–n tunnel FET // Microelectronics Journal. 2013. V. 44(6). P. 479–488.
  11. Baklanov M., Green M., Maex K. Dielectric Films for Advanced Microelectronics. // John Wiley and Sons, LTD. 2007.
  12. Масальский Н.В. Моделирование ВАХ ультра тонких КНИ КМОП нанотранзисторов с полностью охватывающим затвором // Микроэлектроника. 2021. Т. 60. № 6. С. 387—393.
  13. Jin S., Park Y.J., Min H.S. A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions // J. Appl. Phys. 2006. V. 99. P. 123719-1–123719-10.
  14. Elmessary M.A., Nagy D., Aldegunde M., Seoane N., Indalecio G., Lindberg J. Scaling/LER study of Si GAA nanowire FET using 3D finite element Monte Carlo simulations // Solid-State Electronics. 2017. V. 128. P. 17–24.
  15. Bousari N.B., Anvarifard M.K., Haji-Nasiri S. Improving the electrical characteristics of nanoscale triple-gate junctionless FinFET using gate oxide engineering // AEU -International Journal of Electronics and Communications. 2019. V. 108. P. 226–34.
  16. TCAD Sentaurus; Synopsys Inc.: Mountain View, CA, USA, 2017.
  17. Moon D., Choi S., Duarte J., Chio Y. Investigation of silicon nanowire gate – all-around junction less transistors built on a bulk substrate // IEEE Trans Electron Devices. 2013. V. 60. P. 1355–1360.
  18. Avilla-Herrerea F., Paz B., Cerdeira A., Estrada M., Pavanello M. Charge-based compact analytical model for junction less triple-gate nanowire transistors // Solid-State Electronics. 2016. V. 121. P. 23–27.
  19. Briggs S., Leburton J.P. Size effects in multisubband quantum wire structures // Phys. Rev. B. 1988. V. 38. P. 8163–8170.
  20. Mani Manoj P., Pandey K. Surface potential and threshold voltage model of fully depleted narrow channel SOI MOSFET using analytical solution of 3D Poisson’s equation // J. of nano- and electronic physics. 2015. V. 7. P. 2002–2007.
  21. Orlikovsky A., Vyurkov V., Lukichev V., Semenikhin I., Khomyakov A. All quantum simulation of ultrathin SOI MOSFET in nanoscale semiconductor-on-insulator structures and devices // Springer. 2007.
  22. Nanoelectronics: Devices, Circuits and Systems // Editor by Brajesh Kumar Kaushik. Elsevier. 2018.
  23. Tayal S., Nandi A. Analog/RF performance analysis of inner gate engineered junctionless Si nanotube // Superlattices Microstruct. 2017. V. 111. P. 862–871.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (660KB)
3.

Baixar (49KB)
4.

Baixar (59KB)
5.

Baixar (32KB)
6.

Baixar (21KB)
7.

Baixar (40KB)

Declaração de direitos autorais © Н.В. Масальский, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies