Modeling the diffusion of atoms in multicomponent semiconductors in a disordered state

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Density functional theory (DFT) using the generalized gradient approximation (GGA) made it possible to optimize the crystal structure, calculate the lattice parameters and band structure of TlMS₂ (M = Ga, In) semiconductor compounds with a monoclinic structure (space group С2/с, No. 15). DFT calculations of the structure of compounds were expanded using two exchange-correlation functionals GGA-PBE and GGA + U (U is the Coulomb parameter) with a value of UJ = 2.1 eV (effective interaction parameter). Thermal diffusion coefficients (Dα) of atoms of individual types (α), i.e. atoms of thallium, gallium, indium and sulfur near the melting point of the compound were calculated by the molecular dynamics (MD) method. The values of atoms were obtained in the local neutrality approximation using the canonical MD ensemble. The values of the atoms were corrected to take into account the root-mean-square displacements of the atoms at a given time and temperature. The dependences Dα = f(1 / T) of atoms, described by the Arrhenius law, were constructed. The activation energy of atomic diffusion was calculated.

Авторлар туралы

S. Asadov

Scientific Research Institute of Geotechnological Problems of Oil, Gas and Chemistry, Azerbaijan State Oil and Industry University; Nagiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of Azerbaijan

Хат алмасуға жауапты Автор.
Email: salim7777@gmail.com
Ресей, Baku; Baku

Әдебиет тізімі

  1. Allen M.P., Tildesley D.J. Computer Simulation of Liquids (2nd edn). Oxford University Press. UK 626, 2017. ISBN: 9780198803195.
  2. Cicek Z., Yakut S., Deger D., Bozoglu D., Mustafaeva S. Thickness dependence of dielectric properties of TlGaS2 thin films // Materials Science in Semiconductor Processing. 2023. V. 166. P. 107733. https://doi.org/10.1016/j.mssp.2023.107733
  3. Mustafaeva S.N., Asadov M.M., Guseinova S.S., Dzhabarov A.I., Lukichev V.F. Electronic, dielectric properties and charge transfer in a TlGaS2: Nd3+ single crystal at direct and alternating current // Physics of the Solid State. 2022. V. 64. No. 4. P. 426–433. https://doi.org/10.21883/PSS.2022.04.53497.251
  4. Mustafaeva S.N., Asadov M.M., Huseynova S.S., Hasanov N.Z., Lukichev V.F. Ab initio calculations of electronic properties, frequency dispersion of dielectric coefficients and the edge of the optical absorption of TlInS2: Sn single crystals // Physics of the Solid State. 2022. V. 64. No. 6. P. 617–627. https://doi.org/10.21883/PSS.2022.06.53823.299
  5. Asadov S.M., Mustafaeva S.N., Lukichev V.F. Modifying the Dielectric Properties of the TlGaS2 Single Crystal by Electron Irradiation // Russian Microelectronics. 2020. V. 49. No. 4. P. 263–268. https://doi.org/10.1134/S1063739720040022
  6. Nemerenco L., Syrbu N.N., Dorogan V., Bejan N.P., Zalamai V.V. Optical spectra of TlGaS2 crystals // Journal of Luminescence. 2016. V. 172. P. 111–117. https://doi.org/10.1016/j.jlumin.2015.12.001
  7. Hussein S.A., Bahabri F.S., Al-Orainy R.H., Shoker F., Al-Gohtany S.A., Al-Garni S.E. Thermoelectric Characterization of Thallium Gallium Disulphide, TlGaS2 // Journal of King Abdulaziz University. Sci. 2013. V. 25. No. 1. P. 3–14. https://doi.org/10.4197/Sci.25-1.1
  8. Mustafaeva S.N., Asadov M.M., Kyazimov S.B., Gasanov N.Z. T-x phase diagram of the TlGaS2—TlFeS2 system and band gap of TlGa1–xFexS2(0 ≤ x ≤ 0.01) single crystals // Inorganic Materials. 2012. V. 48. No. 10. P. 984–986. https://doi.org/10.1134/s0020168512090117
  9. Delgado G.E., Mora A.J., Pérez F.V., González J. Crystal structure of the ternary semiconductor compound thallium gallium sulfide, TlGaS2 // Physica B. 2007. V. 391. No. 2. P. 385–388. https://doi.org/10.1016/j.physb.2006.10.030
  10. Kashida S., Yanadori Y., Otaki Y., Seki Y., Panich A.M. Electronic structure of ternary thallium chalcogenide compounds // Physica status solidi. (a). 2006. V. 203. No. 11. P. 2666–2669. https://doi.org/10.1002/pssa.200669598
  11. Ashraf I.M. Photophysical Properties of TlGaS2 Layered Single Crystals // The Journal of Physical Chemistry. B. 2004. V. 108. No. 30. P. 10765–10769. https://doi.org/10.1021/jp0311411
  12. Allakhverdiev K.R. Two-photon absorption in layered TlGaSe2, TlInS2, TlGaS2 and GaSe crystals // Solid State Communications. 1999. V. 111. No. 5. P. 253–257. https://doi.org/10.1016/s0038-1098(99)00202-1
  13. Qasrawi A.F., Gasanly N.M. Optoelectronic and electrical properties of TlGaS2 single crystal // Physica status solidi. (a). 2005. V. 202. No. 13. P. 2501–2507. https://doi.org/10.1002/pssa.200521190
  14. Yuksek N.S., Gasanly N.M., Aydinli A., Ozkan H., Acikgoz M. Infrared photoluminescence from TlGaS2 layered single crystals // Crystal Research and Technology. 2004. V. 39. No. 9. P. 800–806. https://doi.org/10.1002/crat.200310256
  15. Asadov S.M., Mustafaeva S.N., Huseynova S.S. Simulation of the growth of a TlInS2 single crystal, DFT calculation of electronic properties, and ac conductivity of samples // Fizika. 2023. Section C. P. 47–52.
  16. Asadov S.M. Molecular Dynamics Modeling of a Ternary Semiconductor Compound in A Liquid State // The Journal of Physical Chemistry. 2023. V. 1. No. 1. P. 01–08. https://cskscientificpress.com
  17. Roccatano D. A Short Introduction to the Molecular Dynamics Simulation of Nanomaterials. In book: M. J. Jackson, W. Ahmed (eds.). Micro and Nanomanufacturing. Volume II. Chapter 6. Springer International Publishing AG. 2018. P. 123–154. https://doi.org/10.1007/978-3-319-67132-1_6
  18. Lammps. http://lammps.sandia.gov/. LAMMPS Molecular Dynamics Simulator.
  19. Verlet L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard—Jones Molecules // Physical Review. 1967. V. 159. P. 98–103. https://doi.org/10.1103/PhysRev.159.98
  20. Görling A. Exchange-correlation potentials with proper discontinuities for physically meaningful kohn-sham eigenvalues and band structures // Physical Review. B. 2015. V. 91. P. 245120-10. https://doi.org/10.1103/PhysRevB.91.245120
  21. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Physical Review Letters. 1996. V. 77. No. 18. P. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
  22. Perdew J.P., Burke K., Ernzerhof M. Erratum: generalized gradient approximation made simple // [Phys. Rev. Lett. 1996. V. 77. P. 3865]. Physical Review Letters. 1997. V. 78. No. 7. P. 1396–1396. https://doi.org/10.1103/PhysRevLett.78.1396
  23. Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F. Ab initio calculations of electronic properties and charge transfer in Zn1–xCuxO with wurtzite structure // Physics of the Solid State. 2022. V. 64. No. 5. P. 526–533. https://doi.org/10.21883/PSS.2022.05.54011.27
  24. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics // Journal of Computational Physics. 1995. V. 117. No. 1. P. 1–19. https://doi.org/10.1006/jcph.1995.10390

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig.1.

Жүктеу (106KB)
3. Fig.2.

Жүктеу (194KB)
4. Fig.3.

Жүктеу (89KB)
5. Fig.4.

Жүктеу (86KB)
6. Fig.5.

Жүктеу (70KB)
7. Fig.6.

Жүктеу (60KB)
8. Fig.7.

Жүктеу (134KB)
9. Fig.8.

Жүктеу (76KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>