TERNARY MEMORY CELLS BASED ON PERFORATED MAGNETIC FILMS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper studies ferromagnetic films with strong uniaxial anisotropy of the “easy plane” type and substantiates that paired nano-sized perforations in such films can be used as memory cells for recording and storing data in the ternary number system. The problem of reading the state of cells of this type has been examined, and an approach to solving it has been proposed, which consists in measuring the response of the system to a picosecond pulse of an external magnetic field. The parameters of the system at which the magnitude of this response is greatest were obtained, and estimates of this value were made using both analytical and numerical methods.

About the authors

E. B Magadeev

Ufa University of Science and Technology

Email: magadeeveb@gmail.com
Ufa, Russia

R. M Vakhitov

Ufa University of Science and Technology

Email: vakhitovrm@yahoo.com
Ufa, Russia

R. R Kanbekov

Ufa University of Science and Technology

Ufa, Russia

References

  1. Fert A., Reyren N., Cros V. Magnetic skyrmions: advances in physics and potential applications, Nat. Rev. Mater. 2017, vol. p. 2, 17031.
  2. Kumar D., Jin T., Sbiaa R. et al. Domain wall memory: Physics, materials, and devices, Phys. Rep. 2022, vol. 958, p. 1.
  3. Vakili H., Xu J.-W., Zhou W. et al. Skyrmionics–Computing and memory technologies based on topological excitations in magnets, J. Appl. Phys. 2021, vol. 130, p. 070908.
  4. Everschor-Sitte K., Masell J., Reeve R.M., Kläui M. Perspective: Magnetic skyrmions–Overview of recent progress in an active research field, J. Appl. Phys. 2018, vol. 124, p. 240901.
  5. Samardak A.S., Kolesnikov A.G., Davydenko A.V. et al. Topologically Nontrivial Spin Textures in Thin Magnetic Films, Phys. Metals Metallogr. 2022, vol. 123, p. 238.
  6. Navas D., Verba R.V., Hierro-Rodriguez A. et al. Route to form skyrmions in soft magnetic films, APL Mater. 2019, vol. 7, p. 081114.
  7. Luo S., You L. Skyrmion devices for memory and logic applications, APL Mater. 2021, vol. 9, p. 050901.
  8. Yu X., Onose Y., Kanazawa N. et al. Real-space observation of a two-dimensional skyrmion crystal, Nature. 2010, vol. 465, p. 901.
  9. Sharafullin I.F., Diep H.T.. Skyrmions and Spin Waves in Magneto–Ferroelectric Superlattices, Entropy. 2020, vol. 22, p. 862.
  10. Hog S.El., Sharafullin I.F., Diep H.T. et al. Frustrated antiferromagnetic triangular lattice with Dzyaloshinskii–Moriya interaction: Ground states, spin waves, skyrmion crystal, phase transition, J. Magn. Magn. Mater. 2022, vol. 563, p. 169920.
  11. Sapozhnikov M.V., Vdovichev S.N., Ermolaeva O.L. et al. Artificial dense lattice of magnetic bubbles, Appl. Phys. Lett. 2016, vol. 109, p. 042406.
  12. Sapozhnikov M.V., Petrov Y.V., Gusev N.S. et al. Artificial Dense Lattices of Magnetic Skyrmions, Materials. 2020, vol. 13, p. 99.
  13. Bogatyrev A.B., Metlov K.L.. Metastable states of sub-micron scale ferromagnetic periodic antidot arrays, J. Magn. Magn. Mater. 2019, vol. 489, p. 165416.
  14. Cowburn R.P., Adeyeye A.O., Bland J.A.C. Magnetic domain formation in lithographically defined antidot Permalloy arrays, Appl. Phys. Lett. 1997, vol. 70, p. 2309.
  15. Xu M., Zhang J., Meng D. et al. The influence of introducing holes on the generation of skyrmions in nanofilms, Phys. Lett. A. 2022, vol. 433, p. 128034.
  16. Magadeev E.B., Vakhitov R.M. JETP Letters. Structure of magnetic inhomogeneities in films with topological features, 2022, vol. 115, p. 114.
  17. Magadeev E.B., Vakhitov R.M., Kanbekov R.R. Theory of vortex-like structures in perforated magnetic films accounting demagnetizing fields, JETP. 2022, vol. 135, p. 364.
  18. Magadeev E.B., Vakhitov R.M., Kanbekov R.R. Stability of nontrivial magnetic structures in ferromagnetic films with antidots, J. Phys.: Condens. Matter. 2023, vol. 35, p. 015802.
  19. Magadeev E., Vakhitov R., Sharafullin I. Mechanism of Topology Change of Flat Magnetic Structures, Entropy. 2022, vol. 24, p. 1104.
  20. Hubert А., Shafer R. Magnetic Domains. Berlin. Springer-Verlag, 2007.
  21. Donahue M.J., Porter D.G. OOMMF User’s Guide, version 2.0a3. National Institute of Standard and Technolog: Gaithersburg, MD, USA, 2021; Websites: https://math.nist.gov/oommf/doc/userguide20a3/userguide/

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).