A COMPACT ELECTROSTATIC ACTUATOR WITH ENHANCED CONTACT FORCE FOR RESISTIVE MEMS SWITCH
- Authors: Uvarov I.V.1,2, Belozerov I.A.1
-
Affiliations:
- NRC "Kurchatov Institute" — Valiev IPT, Yaroslavl Branch
- P.G. Demidov Yaroslavl State University
- Issue: Vol 54, No 6 (2025)
- Pages: 516–527
- Section: МОДЕЛИРОВАНИЕ
- URL: https://journals.rcsi.science/0544-1269/article/view/360428
- DOI: https://doi.org/10.7868/S3034548025060051
- ID: 360428
Cite item
Abstract
About the authors
I. V. Uvarov
NRC "Kurchatov Institute" — Valiev IPT, Yaroslavl Branch; P.G. Demidov Yaroslavl State University
Email: i.v.uvarov@bk.ru
Yaroslavl, Russia; Yaroslavl, Russia
I. A. Belozerov
NRC "Kurchatov Institute" — Valiev IPT, Yaroslavl BranchYaroslavl, Russia
References
- Shao B., Lu C., Xiang Y., Li F., Song M. Comprehensive review of RF MEMS switches in satellite communications // Sensors. 2024. V. 24. 3135. https://doi.org/10.3390/s24103135
- Cao T., Hu T., Zhao Y. Research status and development trend of MEMS switches: A review // Micromachines. 2020. V. 11. 694. https://doi.org/10.3390/mi11070694
- Kurmendra, Kumar R. A review on RF micro-electro-mechanical-systems (MEMS) switch for radio frequency applications // Microsyst. Technol. 2021. V. 27. P. 2525–2542. https://doi.org/10.1007/s00542-020-05025-y
- Heredia J., Ribó M., Pradell L., Wipf S.T., Göritz A., Wietstruck M., Wipf C., Kaynak M. A 125–143-GHz frequency-reconfigurable BiCMOS compact LNA using a single RF-MEMS switch // IEEE Microw. Compon. Lett. 2019. V. 29. P. 339–341. https://doi.org/10.1109/LMWC.2019.2906595
- Iannacci J., Resta G., Bagolini A., Giacomozzi F., Bochkova E., Savin E., Kirtaev R., Tsarkov A., Donelli M. RF-MEMS monolithic K and Ka band multi-state phase shifters as building blocks for 5G and internet of things (IoT) applications // Sensors. 2020. V. 20. 2612. https://doi.org/10.3390/s20092612
- Park J.-H., Lee S., Kim J.-M., Kim H.-T., Kwon Y., Kim Y.-K. Reconfigurable millimeter-wave filters using CPW-based periodic structures with novel multiple-contact MEMS switches // J. Microelectromech. Syst. 2005. V. 14. P. 456–463. https://doi.org/10.1109/JMEMS.2005.844849
- Li M., Zhang Y., Zhao Y., Xue P., Wu Q. Design and fabrication of a 4-bit RF MEMS attenuator with a high attenuation accuracy // Analog Integr. Circ. Sig. Process. 2020. V. 102. P. 617–624. https://doi.org/10.1007/s10470-020-01608-x
- van Spengen W.M., Roobol S.B., Klaassen W.P., Oosterkamp T.H. The MEMSamp: Using (RF-)MEMS switches for the micromechanical amplification of electronic signals // J. Micromech. Microeng. 2010. V. 20. 125011. https://doi.org/10.1088/0960-1317/20/12/125011
- Petersen K.E. Dynamic micromechanics on silicon: Techniques and devices // IEEE Trans. Electron Dev. 1978. V. 25. P. 1241–1250. https://doi.org/10.1109/T-ED.1978.19259
- Saleem M.M., Nawaz H. A systematic review of reliability issues in RF-MEMS switchess // Micro Nanosyst. 2019. V. 11. P. 11–33. https://doi.org/10.2174/1876402911666190204113856
- Sharma A.K., Gautam A. K., Farinelli P., Dutta A., Singh S.G. A Ku band 5 bit MEMS phase shifter for active electronically steerable phased array applications // J. Micromech. Microeng. 2015. V. 25. 035014. https://doi.org/10.1088/0960-1317/25/3/035014
- Stefanini R., Chatras M., Blondy P., Rebeiz G.M. Miniature MEMS switches for RF applications // J. Microelectromech. Syst. 2011. V. 20. P. 1324–1335. https://doi.org/10.1109/JMEMS.2011.2170822
- Spasos M., Nilavalan R. Resistive damping implementation as a method to improve controllability in stiff ohmic RF-MEMS switches // Microsyst. Technol. 2013. V. 19. P. 1935–1943. https://doi.org/10.1007/s00542-013-1757-4
- Liu B., Lv Z., He X., Liu M., Hao Y., Li Z. Improving performance of the metal-to-metal contact RF MEMS switch with a Pt-Au microspring contact design // J. Micromech. Microeng. 2011. V. 21. 065038. https://doi.org/10.1088/0960-1317/21/6/065038
- Toler B.F., Coutu R.A., McBride J.W. A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches // J. Micromech. Microeng. 2013. V. 23. 103001. https://doi.org/10.1088/0960-1317/23/10/103001
- Basu A., Adams G.G., McGruer N.E. A review of micro-contact physics, materials, and failure mechanisms in direct-contact RF MEMS switches // J. Micromech. Microeng. 2016. V. 26. 104004. https://doi.org/10.1088/0960-1317/26/10/104004
- Broue A., Dhennin J., Charvet P.-L., Pons P., Ben Jemaa N., Heeb P., Coccetti F., Plana R. Comparative study of RF MEMS micro-contact materials // Int. J. Microw. Wireless Technol. 2012. V. 4. P. 413–420. https://doi.org/10.1017/S1759078711001140
- Chen L., Guo Z.J., Joshi N., Eid H., Adams G.G., McGruer N.E. An improved SPM-based contact tester for the study of microcontacts // J. Micromech. Microeng. 2012. V. 22. 045017. https://doi.org/10.1088/0960-1317/22/4/045017
- Kwon H., Park J.-H., Lee H.-C., Choi D.-J., Park Y.-H., Nam H.-J., Joo Y.-C. Investigation of similar and dissimilar metal contacts for reliable radio frequency micorelectromechanical switches // Jpn. J. Appl. Phys. 2008. V. 47. P. 6558–6562. https://doi.org/10.1143/JJAP.47.6558
- Rebeiz G.M., Patel C.D., Han S.K., Ko C.-H., Ho K.M.J. The search for a reliable MEMS switch // IEEE Microw. Mag. 2013. V. 14. P. 57–67. https://doi.org/10.1109/MMM.2012.2226540
- Kim S.-B., Yoon Y.-H., Lee Y.-B., Choi K.-W., Jo M.-S., Min H.-W., Yoon J.-B. 4W power MEMS relay with extremely low contact resistance: theoretical analysis, design and demonstration // J. Microelectromech. Syst. 2020. V. 29. P. 1304–1313. https://doi.org/10.1109/JMEMS.2020.3005437
- Kim S.-B., Min H.-W., Lee Y.-B., Kim S.-H., Choi P.-K., Yoon J.-B. Utilizing mechanical adhesion force as a high contact force in a MEMS relay // Sens. Actuators A. 2021. V. 331. 112894. https://doi.org/10.1016/j.sna.2021.112894
- Blondy P., Pothier A., Stefanini R., Gauvin J., Passerieux D., Vendier O., Courtade F. Development of an all-metal large contact force reliable RF-MEMS relay for space applications // 42nd Europ. Microw. Conf. – 2012. https://doi.org/10.23919/EuMC.2012.6459332
- Patel C.D., Rebeiz G.M. A high-reliability high-linearity high-power RF MEMS metal-contact switch for DC‑40-GHz applications // IEEE Trans. Microw. Theory Techn. 2012. V. 60. P. 3096–3112. https://doi.org/10.1109/TMTT.2012.2211888
- Patel C.D., Rebeiz G.M. RF MEMS metal-contact switches with mN-contact and restoring forces and low process sensitivity // IEEE Trans. Microw. Theory Techn. 2011. V. 59. P. 1230–1237. https://doi.org/10.1109/TMTT.2010.2097693
- Seki T., Uno Y., Narise K., Masuda T., Inoue K., Sato S., Sato F., Imanaka K., Sugiyama S. Development of a large-force low-loss metal-contact RF MEMS switch // Sens. Actuators A. 2006. V. 132. P. 683–688. https://doi.org/10.1016/j.sna.2006.02.016
- Sedaghat-Pisheh H., Rebeiz G.M. Variable spring constant, high contact force RF MEMS switch // 2010 IEEE MTT-S Int. Microw. Symp. – 2010. https://doi.org/10.1109/MWSYM.2010.5517083
- Belozerov I.A., Uvarov I.V. Performance optimization of the cantilever-based MEMS switch // St. Petersburg Polytech. Univ. J.: Phys. Math. 2022. V. 15. P. 140–144. https://doi.org/10.18721/JPM.153.226
- Rebeiz G.M. RF MEMS: Theory, design, and technology. Hoboken, New Jersey: John Wiley & Sons, 2003. 495 p.
- Kimiaeifar A., Tolou N., Barari C., Herder J.L. Large deflection analysis of cantilever beam under end point and distributed loads // J. Chin. Inst. Eng. 2014. V. 37. P. 438–445. http://dx.doi.org/10.1080/02533839.2013.814991
- Uvarov I.V., Kupriyanov A.N. Stiction-protected MEMS switch with low actuation voltage // Microsyst. Technol. 2019. V. 25. P. 3243–3251. https://doi.org/10.1007/s00542-018-4188-4
- Uvarov I.V., Kupriyanov A.N. Investigation of characteristics of electrostatically actuated MEMS switch with an active contact breaking mechanism // Russ. Microelectron. 2018. V. 47. P. 307–316. https://doi.org/10.1134/S1063739718050086
- Belozerov I.A., Uvarov I.V. MEMS switch based on a cantilever with increased contact force // Russ. Microelectron. 2023. V. 52. P. 475–482. https://doi.org/10.1134/S1063739723700774
- Majumder S., McGruer N.E., Adams G.G., Zavracky P.M., Morrison R.H., Krim J. Study of contacts in an electrostatically actuated microswitch // Sens. Actuators A. 2001. V. 93. P. 19–26. https://doi.org/10.1016/S0924-4247(01)00627-6
- Majumder S., Lampen J., Morrison R., Maciel J. MEMS switches // IEEE Instrum. Meas. Mag. 2003. V. 6. P. 12–15. https://doi.org/10.1109/MIM.2003.1184267
- Ma Q., Tran Q., Chou T.-K.A., Heck J., Bar H., Kant R., Rao V. RF Metal contact reliability of RF MEMS switches // Proc. SPIE. 2007. V. 6463. 646305. https://doi.org/10.1117/12.702177
Supplementary files


