FLUOROPOLYMER FOR MICROELECTRONICS PRODUCTION (REVIEW)
- Authors: Bolbasov E.N.1,2, Buznik V.M.3,4, Varlamov D.A.5, Vorobiev A.O.1, Dubinenko G.E.1, Eremchuk A.I.5, Trusova M.E.1
-
Affiliations:
- Tomsk Polytechnic University
- V.E. Zuev Institute of Atmospheric Optics RAS
- Tomsk State University
- Kurnakov Institute of General and Inorganic Chemistry RAS
- Molecular Electronics Research Institute
- Issue: Vol 54, No 6 (2025)
- Pages: 487–515
- Section: МОДЕЛИРОВАНИЕ
- URL: https://journals.rcsi.science/0544-1269/article/view/360427
- DOI: https://doi.org/10.7868/S3034548025060048
- ID: 360427
Cite item
Abstract
About the authors
E. N. Bolbasov
Tomsk Polytechnic University; V.E. Zuev Institute of Atmospheric Optics RAS
Email: floorplast@tpu.ru
Tomsk, Russia; Tomsk, Russia
V. M. Buznik
Tomsk State University; Kurnakov Institute of General and Inorganic Chemistry RAS
Email: buznikv@list.ru
Tomsk, Russia; Moscow, Russia
D. A. Varlamov
Molecular Electronics Research InstituteZelenograd, Russia
A. O. Vorobiev
Tomsk Polytechnic UniversityTomsk, Russia
G. E. Dubinenko
Tomsk Polytechnic UniversityTomsk, Russia
A. I. Eremchuk
Molecular Electronics Research InstituteZelenograd, Russia
M. E. Trusova
Tomsk Polytechnic UniversityTomsk, Russia
References
- Maier G. Polymers for microelectronics // Materials Today. 2001. V. 4. P. 22–33. https://doi.org/10.1016/S1369-7021(01)80253-4
- Maier G. Low dielectric constant polymers for microelectronics // Prog Polym Sci. 2001. V. 26. P. 3–65.. https://doi.org/10.1016/S0079-6700(00)00043-5
- Maier G., Banerjee S., Haußmann J., Sezi R. High-Temperature Polymers for Advanced Microelectronics // High Performance Polymers. 2001. V. 13. No 2. https://doi.org/10.1088/0954-0083/13/2/310
- Loginov B.A., Villemson A.L., Buznik V.M. Rossiiskie ftorpolimery: istoriia, tekhnologii, perspektivy [Russian fluoropolymers: history, technology, prospects. 2013. https://www.studmed.ru/loginov-b-a-villemson-a-l-buznik-v-m-rossiyskie-ftorpolimery-istoriya-tehnologii-perspektivy_8923a195a0d.html (accessed July 4, 2023).
- Buknik V.M., Khokhlov A.R. Ftorpolimernye materialy. Sovremennoe sostoyanie i perspektivy [Fluoropolymer materials. Current state and prospects] // Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D. I. Mendeleeva [Journal of the Russian Chemical Society named after D. I. Mendeleev]. 2008. V. 52. No 5. P. 5–6.
- Buznik V.M. Ftorpolimernye materialy [Fluoropolymer materials] // Izd-vo NTL. 2017.
- Panshin Yu.A., Malkevich S.G., Dunaevskaya Ts.S. Ftoroplasty [Fluoroplastics] // Khimiya. 1978.
- Nudel’man N. Ftorkachuki: osnovy, pererabotka, primenenie [Fluoroe lastomers: fundamentals, processing, application] // OOO “PIF RIAS”. 2007.
- K-Mac Plastics. Chemical resistance of plastic materials. (n. d.). http://k-mac-plastics.com/chemical-large.htm (accessed July 4, 2023).
- UralActiv. Sverkhvysokomolekulyarnyy polietilen PE‑1000* [Ultra-high molecular weight polyethylene PE‑1000]. https://uralactiv.ru/listovoy-plastik/sverhvysokomolekulyarnyy-polietilen-svmpe/sverhvysokomolekulyarnyy-polietilen-pe‑1000 (accessed July 4, 2023).
- Microspec Corporation. Polysulfone (PSU). from https://www.microspecorporation.com/materials/engineering-resins/polysulfone// (accessed July 4, 2023).
- Sterling Plastics, Inc. Polysulfone (PSU). (n. d.). http://sterlingplasticsinc.com/materials/polysulfone-psu/ (accessed July 4, 2023).
- Vitahim. Полисульфон ПСФ 150 [Polysulfone PSF 150]. (n. d.). https://vitahim.ru/catalog/polimernye_materialy/polisulfon/polisulfon_psf_150_1/ (accessed July 4, 2023).
- Halopolymer. Традиционные фторполимеры [Traditional fluoropolymers]. (n. d.). https://halopolymer.ru/product/ftorpolimery/traditsionnye-ftorpolimery/ (accessed July 4, 2023).
- Molded. Overview of materials for Polytetrafluoroethylene (PTFE) // MatWeb. (n. d.) https://www.matweb.com/search/datasheet_print.aspx?matguid=4d14eac958e5401a8fd152e1261b6843 (accessed July 4, 2023).
- Chemours. Teflon™ FEP 100 Fluoropolymer Resin. // MatWeb. (n. d.). https://www.matweb.com/search/datasheet.aspx?matguid=3dbaaa8dbb114c57996acd6738a7efc1&ckck=1 (accessed July 4, 2023).
- Greer A.I.M., Vasiev I., Della-Rosa B., Gadegaard N. Fluorinated ethylene–propylene: a complementary alternative to PDMS for nanoimprint stamps // Nanotechnology. 2016. V. 27. P. 155301. https://doi.org/10.1088/0957-4484/27/15/155301
- Halopolymer. Ф‑4МБ (FEP), (n. d.). https://halopolymer.ru/product/ftorpolimery/spetsialnye-ftorpolimery/osnovnye/f‑4mb-fep/ (accessed July 4, 2023).
- AZoM. Ethylene-Chlorotrifluoroethylene – ECTFE. (n. d.). https://www.azom.com/article.aspx? ArticleID=391 (accessed July 4, 2023).
- Curbell Plastics. ECTFE Halar® plastic | ECTFE material properties, chemical resistance, & compatibility. (n. d.). https://www.curbellplastics.com/materials/plastics/ectfe/ (accessed July 4, 2023).
- Halopolymer. Ф‑2М (PVDF). (n. d.). https://halopolymer.ru/product/ftorpolimery/spetsialnye-ftorpolimery/osnovnye/f‑2m-pvdf/ (accessed July 4, 2023).
- Saxena P., Shukla P. A comprehensive review on fundamental properties and applications of polyvinylidene fluoride (PVDF) // Adv Compos Hybrid Mater. 2021. V. 4. P. 8–26. https://doi.org/10.1007/s42114-021-00217-0
- Fluorotherm. PFA tubing | Properties. (n. d.). https://www.fluorotherm.com/technical-information/materials-overview/pfa-properties/ (accessed July 4, 2023).
- Curbell Plastics. PFA plastic & properties | Flexible fluoropolymer. (n. d.). https://www.curbellplastics.com/materials/plastics/pfa/ (accessed July 4, 2023).
- Ebnesajjad S. Chemical Properties of Fluoropolymers-Polytetrafluoroethylene and Polychlorotrifluoroethylene // Fluoroplastics. 2015. P. 382–395. https://doi.org/10.1016/B978-1-4557-3199-2.00017-3
- D With Us. ABS acetone vapour smoothing – Filament review // 3D printing materials. (n. d.). https://3dwithus.com/abs-acetone-smoothing-filament-review (accessed July 10, 2023).
- Vock S., Klöden B., Kirchner A., Weißgärber T., Kieback B. Powders for powder bed fusion: a review // Progress in Additive Manufacturing. 2019. V. 4. P. 383–397. https://doi.org/10.1007/s40964-019-00078-6
- Schmid M., Amado A., Wegener K. Polymer powders for selective laser sintering (SLS) // AIP Conf. Proc. 2015. P. 160009. https://doi.org/10.1063/1.4918516.
- Han W., Kong L., Xu M. Advances in selective laser sintering of polymers // Int. J. Extrem. Manuf. 2022. V. 4. https://doi.org/10.1088/2631-7990/ac9096
- Campanelli C., Wildman R.D., Tuck C.J. Processing of High-Performance Fluoropolymers by Laser Sintering // Conf. Annual International Solid Freeform Fabrication Symposium. 2018. https://doi.org/10.26153/TSW/17153
- Brito Guaricela J.L., Ahrens C.H., Oliveira Barra G.M., Merlini C. Evaluation of poly(vinylidene fluoride)/carbon black composites, manufactured by selective laser sintering // Polym. Compos. 2021. V. 42. P. 2457–2468. https://doi.org/10.1002/pc.25991.
- Song S., Li Y., Wang Q., Zhang C. Facile preparation of high loading filled PVDF/BaTiO3 piezoelectric composites for selective laser sintering 3D printing // RSC Adv. 2021. V. 11. P. 37923–37931. https://doi.org/10.1039/D1RA06915B
- Song S., Li Y., Wang Q., Zhang C. Boosting piezoelectric performance with a new selective laser sintering 3D printable PVDF/graphene nanocomposite // Compos. Part. A Appl. Sci. Manuf. 2021. V. 147. P. 106452. https://doi.org/10.1016/j.compositesa.2021.106452
- M. Developmental product: A new dimension of opportunity. 3D printing with 3M™ Dyneon™ fluoropolymers. (n. d.) https://www.3m.com/3M/en_US/fluoropolymers-us/technologies/3d-printing/ (accessed July 10, 2023).
- Yao M., Ouyang X., Wu J., Zhang A.P., Tam H.-Y., Wai P.K.A. Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams // Sensors. 2018. V. 18. No 6. P. 1825. https://doi.org/10.3390/s18061825
- Kotz F., Risch P., Helmer D., Rapp B. Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices // Micromachine. 2018. V. 9. P. 115. https://doi.org/10.3390/mi9030115
- Lee J.N. Solvent-resistant perfluoropolyether (PFPE) microfluidic devices // California Institute of Technology. 2002. https://thesis.library.caltech.edu/4796/6/05_Chapter_5.pdf (accessed July 9, 2023).
- Akimchenko I.O., Dubinenko G.E., Rutkowski S., Tverdokhlebov S.I., Vorobyev A.O., Bouznik V.M., Bolbasov E.N. One-step production of 3D printed ferroelectric polymer forms using fused deposition modeling // Appl. Phys. Lett. 2021. V. 119. https://doi.org/10.1063/5.0070365/40498
- Vorob’ev A.O., Kul’bakin D.E., Chistyakov S.G., Mitrichenko A.D., Dubinenko G.E., Akimchenko I.O., Plotnikov E.V., Gogolev A.S., Choinzonov E.L., Buznik V.M., Bol’basov E.N. Individual 3D-Printed Implants Made from a Copolymer of Vinylidene Fluoride with Tetrafluoroethylene: Studies of the Effects of Steam Sterilization on Structure and Toxicity // Biomed. Eng. 2023. V. 57. P. 52–56. https://doi.org/10.1007/S10527-023-10266-Y/METRICS
- Marandi M., Tarbutton J. Additive manufacturing of singleand double-layer piezoelectric PVDF-TrFE copolymer sensors // Procedia. Manuf. 2019. V. 34. P. 666–671. https://doi.org/10.1016/J.PROMFG.2019.06.194
- Akimchenko I.O., Dubinenko G.E., Rutkowski S., Tverdokhlebov S.I., Vorobyev A.O., Bouznik V.M., Bolbasov E.N. One-step production of 3D printed ferroelectric polymer forms using fused deposition modeling // Appl. Phys. Lett. 2021. V. 119. https://doi.org/10.1063/5.0070365/40498
- Vorob’ev A.O., Kul’bakin D.E., Chistyakov S.G., Mitrichenko A.D., Dubinenko G.E., Akimchenko I.O., Plotnikov E.V., Gogolev A.S., Choizhono E.L., Buznik V.M., Bol’basov E. Individual’nye implantaty, izgotovlennye metodom 3D-pechati iz sopolimera vinilidenftorida s tetraftorėtilenom: issledovanie vliyaniya parovoy sterilizatsii na strukturu i toksichnost’ [Individual implants manufactured by 3D printing from vinylidene fluoride-tetrafluoroethylene copolymer: a study of the effect of steam sterilization on structure and toxicity] // Meditsinskaya Tekhnika. 2023. V. 4. P. 40–43. http://www.mtjournal.ru/archive/2023/meditsinskaya-tekhnika‑1/individualnye-implantaty-izgotovlennye-metodom‑3d-pechati-iz-sopolimera-vinilidenftorida-s-tetraftor (accessed July 10, 2023).
- Vorob’ev A.O., Kul’bakin D.E., Chistyakov S.G., Mitrichenko A.D., Dubinenko G.E., Akimchenko I.O., Plotnikov E.V., Gogolev A.S., Choinzonov E.L., Buznik V.M., Bol’basov E.N. Individual 3D-Printed Implants Made from a Copolymer of Vinylidene Fluoride with Tetrafluoroethylene: Studies of the Effects of Steam Sterilization on Structure and Toxicity // Biomed. Eng. 2023. V. 57. P. 52–56. https://doi.org/10.1007/S10527-023-10266-Y/METRICS
- Synder Filtration. Ultrafiltration membranes. (n. d.). https://synderfiltration.com/ultrafiltration/membranes/ (accessed July 13, 2023).
- Gore. Microfiltration Media for Pharmaceutical, Bioprocessing, Food & Beverage Filtration. (n. d.). https://www.gore.com/products/microfiltration-media-for-pharmaceutical-bioprocessing-food-and-beverage-filtration (accessed July 13, 2023).
- Merck Millipore. Durapore® membrane filter, 0.22 µm. (n. d.). https://www.merckmillipore.com/NL/en/product/Durapore-Membrane-Filter‑0.22m, MM_NF-GVWP04700? ReferrerURL=https%3A%2F%2Fwww.google.com%2F (accessed July 13, 2023).
- Membrane Solutions. Hydrophobic PVDF membrane. (n. d.). https://www.membrane-solutions.com/pvdf_hydrophobic_membrane.htm (accessed July 13, 2023).
- Membrane Solutions. Hydrophobic PTFE membrane. (n. d.). https://www.membrane-solutions.com/ptfe_filtration.htm (accessed July 13, 2023).
- M. Beverage membrane modules. (n. d.). https://www.3m.com/3M/en_US/membrana-us/products/industrial-filtration/liqui-flux-beverage-membrane-modules/ (accessed July 13, 2023).
- Krackeler Scientific, Inc. Pall Gelman TF (PTFE) membranes. (n. d.). https://www.krackeler.com/catalog/product/3764/Pall-Gelman-TF-PTFE-Membranes (accessed July 13, 2023).
- Pall Corporation. 0.2um, Emflon® PFRW hydrophobic PTFE membrane filters. (n. d.). https://shop.pall.com/us/en/food-beverage/soft-drinks/vent-filtration‑2/zidgri78m4r (accessed July 13, 2023).
- Pall Corporation. Supor® beverage filter cartridges, AB3SBB7WH4 – Products. (n. d.). https://shop.pall.com/us/en/food-beverage/wine/final-filtration-microbial-stabilization‑1/zidAB3SBB7WH4? CategoryName=&CatalogID=&tracking=searchterm: (accessed July 13, 2023).
- Apel P.Yu., Dmitriev S.N. Treckovye membrany [Track membranes]. In A. B. Yaroslavtsev (Ed.) // Membrany i membrannye tekhnologii [Membranes and membrane technologies]. 2013.
- Guo Q., Huang Y., Xu M., Huang Q., Cheng J., Yu S., Zhang Y., Xiao C. PTFE porous membrane technology: A comprehensive review // J. Memb. Sci. 2022. V. 664. P. 121115. https://doi.org/10.1016/J.MEMSCI.2022.121115
- DuPont. Fluorocarbon vinyl ether polymers (US3282875A) // Google Patents. 1966. https://patents.google.com/patent/US3282875A/en (accessed October 29, 2024).
- Astakhov E., Astakhova A., Tsarin P., Kolganov I., Gorobets S. Primenenie termokhimicheski stoikikh fil’truyushchikh materialov v mikroelektronnoi promyshlennosti [Application of thermochemically stable filtering materials in microelectronic industry] // Electronics: Science, Technology, Business. 2019. V. 188. P. 128–132. https://doi.org/10.22184/1992-4178.2019.188.7.128.132
- Astakhov E., Astakhova A., Tsarin P., Kolganov I., Gorobets S., Dymova A. Primenenie novykh poristykh materialov dlya nuzh razlichnykh otrasley promyshlennosti [Application of new porous materials for the needs of various industries] // Electronics: Science, Technology, Business. 2019. V. 189. P. 130–134. https://doi.org/10.22184/1992-4178.2019.189.8.130.134
- Astakhov E.Yu., Bol’bit N.M., Klinshpont E.R., Tsarin P.G. Kharakteristiki poristykh plenok iz politetraftorétilena, poluchennykh na osnove suspensiy poroshkov v spirte [Characteristics of porous polytetrafluoroethylene films obtained from powder suspensions in alcohol] // Kriticheskie Tekhnologii. Membrany. 2005. V. 3. P. 34–40.
- Grakovich P.N., Ivanov L.F., Kalinin L.A., Ryabchenko I.L., Tolstopyatov E.M., Krasovsky, A.M. Lazernaya ablyatsiya politetraftorétilena [Laser ablation of polytetrafluoroethylene] // Rossiyskiy Khimicheskiy Zhurnal, 2008. V. 3. P. 97–105.
- Su C., Chang J., Tang K., Gao F., Li Y., Cao H., Novel three-dimensional superhydrophobic and strength-enhanced electrospun membranes for long-term membrane distillation // Sep. Purif. Technol. 2017. V. 178. P. 279–287. https://doi.org/10.1016/j.seppur.2017.01.050
- Lee E.-J., An A.K., Hadi P., Lee S., Woo Y.C., Shon H.K. Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation // J. Memb. Sci. 2017. V. 524. P. 712–720. https://doi.org/10.1016/j.memsci.2016.11.069.
- Seyed Shahabadi S.M., Rabiee H., Seyedi S.M., Mokhtare A., Brant J.A. Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluorideco -hexafluoropropylene (TiO2/PH) nanofibrous membrane for high flux membrane distillation // J. Memb. Sci. 2017. V. 537. P. 140–150. https://doi.org/10.1016/j.memsci.2017.05.039.
- Tverdokhlebova T.S., Bolbasov E.N., Bouznik V.M. Composition Polymeric Membranes Based on the VDF-TeFE Copolymer Formed by Electrospinning // IOP Conf. Ser. Mater. Sci. Eng. 2020. V. 731. P. 012022. https://doi.org/10.1088/1757-899X/731/1/012022
- Badaraev A.D., Koniaeva A., Krikova S.A., Shesterikov E.V., Bolbasov E.N., Nemoykina A.L., Bouznik V.M., Stankevich K.S., Zhukov Y.M., Mishin I.P., Varakuta E.Y., Tverdokhlebov S.I. Piezoelectric polymer membranes with thin antibacterial coating for the regeneration of oral mucosa // Appl. Surf. Sci. 2020. V. 504. P. 144068. https://doi.org/10.1016/j.apsusc.2019.144068
- Kolesnik I., Tverdokhlebova T., Danilenko N., Plotnikov E., Kulbakin D., Zheravin A., Bouznik V., Bolbasov E. Characterization and Determination of the Biocompatibility of Porous Polytetrafluoroethylene Membranes Fabricated via Electrospinning // J. Fluor. Chem. 2021. V. 246. P. 109798. https://doi.org/10.1016/J.JFLUCHEM.2021.109798
- Zaarour B., Zhu L., Huang C., Jin X. Fabrication of a polyvinylidene fluoride cactus-like nanofiber through one-step electrospinning // RSC Adv. 2018. V. 8. P. 42353–42360. https://doi.org/10.1039/C8RA09257E
- Asai H., Kikuchi M., Shimada N., Nakane K. Effect of melt and solution electrospinning on the formation and structure of poly(vinylidene fluoride) fibres // RSC Adv. 2017. V. 7. P. 17593–17598. https://doi.org/10.1039/C7RA01299C
- Zheng J., He A., Li J., Han C.C. Polymorphism Control of Poly(vinylidene fluoride) through Electrospinning // Macromol Rapid Commun. 2007. V. 28. P. 2159–2162. https://doi.org/10.1002/marc.200700544
- Gopal R., Kaur S., Ma Z., Chan C., Ramakrishna S., Matsuura T. Electrospun nanofibrous filtration membrane // J. Memb. Sci. 2006. V. 281. 581–586. https://doi.org/10.1016/j.memsci.2006.04.026.
- Gee S., Johnson B., Smith A.L. Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes // J. Memb. Sci. 2018. V. 563. P. 804–812. https://doi.org/10.1016/j.memsci.2018.06.050
- Shibuya M., Park M.J., Lim S., Phuntsho S., Matsuyama H., Shon H.K. Novel CA/PVDF nanofiber supports strategically designed via coaxial electrospinning for high performance thin-film composite forward osmosis membranes for desalination // Desalination. 2018. V. 445. P. 63–74. https://doi.org/10.1016/j.desal.2018.07.025
- Liu C., Li X., Liu T., Liu Z., Li N., Zhang Y., Xiao C., Feng X. Microporous CA/PVDF membranes based on electrospun nanofibers with controlled crosslinking induced by solvent vapor // J. Memb. Sci. 2016. V. 512. P. 1–12. https://doi.org/10.1016/j.memsci.2016.03.062
- Lins L.C., Wianny F., Livi S., Dehay C., Duchet‐Rumeau J., Gérard J. Effect of polyvinylidene fluoride electrospun fiber orientation on neural stem cell differentiation // J. Biomed. Mater. Res. B Appl. Biomater. 2017. V. 105. P. 2376–2393. https://doi.org/10.1002/jbm.b.33778
- Fang C., Yang S., Zhao X., Du P., Xiong J. Electrospun montmorillonite modified poly(vinylidene fluoride) nanocomposite separators for lithium-ion batteries // Mater. Res. Bull. 2016. V. 79. P. 1–7. https://doi.org/10.1016/j.materresbull.2016.02.015
- Costa C.M., Lizundia E., Lanceros-Méndez S. Polymers for advanced lithium-ion batteries: State of the art and future needs on polymers for the different battery components // Prog. Energy. Combust. Sci. 2020. V. 79. P. 100846. https://doi.org/10.1016/j.pecs.2020.100846
- Qing W., Shi X., Deng Y., Zhang W., Wang J., Tang C.Y. Robust superhydrophobic-superoleophilic polytetrafluoroethylene nanofibrous membrane for oil/water separation // J. Memb. Sci. 2017. V. 540. P. 354–361. https://doi.org/10.1016/j.memsci.2017.06.060
- C. Su, Y. Li, H. Cao, C. Lu, Y. Li, J. Chang, Duan F. Novel PTFE hollow fiber membrane fabricated by emulsion electrospinning and sintering for membrane distillation // J. Memb. Sci. 2019. V. 583. P. 200–208. https://doi.org/10.1016/j.memsci.2019.04.037
- Zhao P., Soin N., Prashanthi K., Chen J., Dong S., Zhou E., Zhu Z., Narasimulu A.A., Montemagno C.D., Yu L., Luo J. Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators // ACS Appl. Mater. Interfaces. 2018. V. 10. 5880–5891. https://doi.org/10.1021/ACSAMI.7B18442/ASSET/IMAGES/LARGE/AM‑2017-18442Q_0007.JPEG
- Wakabayashi H., Yamagami S., Ikezawa N., Ogura A., Narihiro M., Arai K., Ochiai Y., Takeuchi K., Yamamoto T., Mogami T. Sub‑10-nm planar-bulk-CMOS devices using lateral junction control // IEEE International Electron Devices Meeting. 2003. P. 20.7.1–20.7.3. https://doi.org/10.1109/IEDM.2003.1269446
- Lee H., Yu L.E., Ryu S. W., Han J.W., Jeon K., Jang D.Y., Kim K.H., Lee J., Kim J.H., Jeon S.C., Lee G.S., Oh J.S., Park Y.C., Bae W.H., Lee H.M, Yang J.M., Yoo J.J., Kim S.I., Choi Y.K. Sub‑5nm all-around gate FinFET for ultimate scaling, Digest of Technical Papers // Symposium on VLSI Technology/ 2006. P. 58–59. https://doi.org/10.1109/VLSIT.2006.1705215
- Bracciale M.P., Capasso L., Sarasini F., Tirillò J., Santarelli M.L. Effect of Aging on the Mechanical Properties of Highly Transparent Fluoropolymers for the Conservation of Archaeological Sites // Polymers. 2022. V. 14. P. 912. https://doi.org/10.3390/POLYM14050912/S1
- Zhao S., Zhao J., Wen M., Yao M., Wang F., Huang F., Zhang Q., Cheng Y.B., Zhong J. Sequentially Reinforced Additive Coating for Transparent and Durable Superhydrophobic Glass // Langmuir. 2018. V. 34. P. 11316–11324. https://doi.org/10.1021/ACS.LANGMUIR.8B01960/ASSET/IMAGES/LARGE/LA‑2018-01960K_0007.JPEG
- Holscot Europe. Properties of FEP, PFA, ETFE and PTFE. (n. d.). http://www.holscoteurope.com/en/materials/ (accessed July 6, 2023).
- Galante A.M.S., Galante O.L., Campos L.L. Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry // Nucl. Instrum. Methods. Phys. Res. A. 2010. V. 619. P. 177–180. https://doi.org/10.1016/j.nima.2009.10.103
- UV Solutions. Use of fluoropolymers in UV sterilization equipment. 2021. https://uvsolutionsmag.com/articles/2021/use-of-fluoropolymers-in-uv-sterilization-equipment/ (accessed July 6, 2023).
- Grosfils P., Lutsko J.F. Impact of Surface Roughness on Crystal Nucleation // Crystals. 2020. V. 11. No 4. https://doi.org/10.3390/cryst11010004
- Vitlab. Продукты из фторопласта: VITLAB изделия для лаборатории (RU) [Fluoroplastic products: VITLAB laboratory equipment (RU)]. (n. d.). https://www.vitlab.com/ru/produkty/informacija/produkty-iz-ftoroplasta/ (accessed July 10, 2023).
- Elliott L.D., Knowles J.P., Koovits P.J., Maskill K.G., Ralph M.J., Lejeune G., Edwards L.J., Robinson R.I., Clemens I.R., Cox B., Pascoe D.D., Koch G., Eberle M., Berry M.B., Booker‐Milburn K.I. Batch versus Flow Photochemistry: A Revealing Comparison of Yield and Productivity // Chemistry – A European Journal. 2014. V. 20. P. 15226–15232. https://doi.org/10.1002/chem.201404347
- Cambié D., Bottecchia C., Straathof N.J.W., Hessel V., Noël T. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment // Chem. Rev. 2016. V. 116. P. 10276–10341. https://doi.org/10.1021/acs.chemrev.5b00707
- Szymborski T., Jankowski P., Garstecki P. Teflon microreactors for organic syntheses // Sens Actuators B Chem. 2018. V. 255. P. 2274–2281. https://doi.org/10.1016/j.snb.2017.09.035
- Szymborski T., Jankowski P., Ogończyk D., Garstecki P. An FEP Microfluidic Reactor for Photochemical Reactions // Micromachines. 2018. V. 9 P. 156. https://doi.org/10.3390/mi9040156.
- Elvira K.S., Gielen F., Tsai S.S.H., Nightingale A.M. Materials and methods for droplet microfluidic device fabrication // Lab. Chip. 2022. V. 22. P. 859–875. https://doi.org/10.1039/D1LC00836F
- Engineers Edge. Particle size and distribution air / fluid filter – Filtration. (n. d.). https://www.engineersedge.com/filtration/filtration_particle_size.htm (accessed September 13, 2023).
- Hussain A., Janson A., Matar J. M., Adham S. Membrane distillation: recent technological developments and advancements in membrane materials // Emergent Mater. 2022. V. 5. P. 347–367. https://doi.org/10.1007/s42247-020-00152-8
- Synder Filtration. Ultrafiltration membranes. (n. d.). https://synderfiltration.com/ultrafiltration/membranes/ (accessed July 13, 2023).
- Yanpai Deutschland Technische Textilien GmbH. PTFE membrane. (n. d.). https://www.yanpai.de/ptfe-membrane‑1 (accessed July 13, 2023).
- Zhao J., Shi L., Loh C.H., Wang R. Preparation of PVDF/PTFE hollow fiber membranes for direct contact membrane distillation via thermally induced phase separation method // Desalination. 2018. V. 430. P. 86–97. https://doi.org/10.1016/J.DESAL.2017.12.041
- Pu L., Xu Y., Xia Q., Ding J., Wang Y., Shan C., Wu D., Zhang Q., Gao G., Pan B. Ferroelectric membrane for water purification with arsenic as model pollutant // Chemical Engineering Journal. 2021. V. 403. P. 126426. https://doi.org/10.1016/j.cej.2020.126426
- American Air Filter Thailand. Microelectronics clean air solutions. (2021). https://www.aafthailand.com/wp-content/uploads/2021/07/Microelectronics_MAFP‑99-101A.pdfSolutions, (accessed August 1, 2023).
- Zhou Y., Liu Y., Zhang M., Feng Z., Yu D.-G., Wang K. Electrospun Nanofiber Membranes for Air Filtration: A Review // Nanomaterials. 2022. V. 12. P. 1077. https://doi.org/10.3390/nano12071077
- Li X., Wang X.-X., Yue T.-T., Xu Y., Zhao M.-L., Yu M., Ramakrishna S., Long Y.-Z. Waterproof-breathable PTFE nanoand Microfiber Membrane as High Efficiency PM2.5 Filter // Polymers. 2019. V. 11. P. 590. https://doi.org/10.3390/polym11040590
- Vanangamudi A., Hamzah S., Singh G. Synthesis of hybrid hydrophobic composite air filtration membranes for antibacterial activity and chemical detoxification with high particulate filtration efficiency (PFE) // Chemical Engineering Journal. 2015. V. 260. P. 801–808. https://doi.org/10.1016/j.cej.2014.08.062
- Huang Z.-X., Liu X., Zhang X., Wong S.-C., Chase G.G., Qu J.-P., Baji A. Electrospun polyvinylidene fluoride containing nanoscale graphite platelets as electret membrane and its application in air filtration under extreme environment // Polymer. 2017. V. 131. P. 143–150. https://doi.org/10.1016/j.polymer.2017.10.033
- He W., Guo Y., Zhao Y.-B., Jiang F., Schmitt J., Yue Y., Liu J., Cao J., Wang J. Self-supporting smart air filters based on PZT/PVDF electrospun nanofiber composite membrane // Chemical Engineering Journal. 2021. V. 423. P. 130247. https://doi.org/10.1016/j.cej.2021.130247
- Mazhar S.I., Shafi H.Z., Shah A., Asma M., Gul S., Raffi M. Synthesis of surface modified hydrophobic PTFE-ZnO electrospun nanofibrous mats for removal of volatile organic compounds (VOCs) from air // Journal of Polymer Research. 2020. V. 27. P. 1–13. https://doi.org/10.1007/S10965-020-02218-X/TABLES/3
- Zheng G., Shao Z., Chen J., Jiang J., Zhu P., Wang X., Li W., Liu Y. Self-Supporting Three-Dimensional Electrospun Nanofibrous Membrane for Highly Efficient Air Filtration // Nanomaterials. 2021. V. 11. P. 2567. https://doi.org/10.3390/nano11102567
- Shen H., Zhou Z., Wang H., Zhang M., Han M., Durkin D.P., Shuai D., Shen Y. Development of Electrospun Nanofibrous Filters for Controlling Coronavirus Aerosols // Environ Sci. Technol. Lett. 2021. V. 8. P. 545–550.
- Bui T.T., Shin M.K., Jee S.Y., Long D.X., Hong J., Kim M.-G. Ferroelectric PVDF nanofiber membrane for high-efficiency PM0.3 air filtration with low air flow resistance // Colloids Surf. A Physicochem. Eng. Asp. 2022. V. 640. P. 128418. https://doi.org/10.1016/j.colsurfa.2022.128418
Supplementary files


