DESIGN OF FUZZY QUANTUM MEASUREMENT PROTOCOLS FOR ION-BASED QUDITS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We propose a model for quantum tomography protocols of ion-trap qudits that incorporates parameter-setting errors in measurement transformations. A comparative analysis of reconstruction accuracy under transformation uncertainty is conducted for both the conventional projective measurement approach and the fuzzy quantum measurement framework. The results demonstrate a substantial advantage of the fuzzy measurement model in the presence of transformation inaccuracies. Furthermore, the model enables the construction of a complete set of two-level unitary transformations applicable to qudit states.

About the authors

K. B. Koksharov

National Research University MIET; National Research Center "Kurchatov Institute" — Valley Institute of Physics and Technology

Email: kirill.koksharov7@gmail.com
Zelengrad, Russia; Moscow, Russia

Yu. I. Bogdanov

National Research University MIET; National Research Center "Kurchatov Institute" — Valley Institute of Physics and Technology

Zelengrad, Russia; Moscow, Russia

B. I. Bantysh

National Research Center "Kurchatov Institute" — Valley Institute of Physics and Technology

Moscow, Russia

V. F. Lukichev

National Research Center "Kurchatov Institute" — Valley Institute of Physics and Technology

Moscow, Russia

References

  1. Drozhzhin D.A., Nikolaeva A.S., Kitenko E.O., Fedorov A.K. Tran[spiling quantum assembly language circuits to a qudit form // Entropy. 2024. Vol. 26. № 12. P. 1129.
  2. Ringbauer M., Meth M., Postler L., Stricker R., Baltt R. Universal qudit quantum processor with trapped ions // Nature Physics. 2022. Vol. 18. P. 1053–1057.
  3. Aksenov M.A., Zalivako I.V., Semerikov I.A., Borisenko A.S., Semenin N.V., Sidorov P.L., Fedorov A.K., Khabarova K.Yu, Kolachevsky N.N. Realizing quantum gates with optically addressable Yb+ 171 ion qudits // Physical Review A. 2023. Vol. 107. № 5. P. 052612.
  4. Bogdanov Yu.I., Bogdanova N.A., Kuznetsov Y.A., Koksharov K.B., Lukichev V.F. Precise Tomography of Qudits // Russian Microelectronics. 2023. Vol. 52. № 3. P. 135–143.
  5. Struchalin G.I., Pogorelov I.A., Straupe S.S., Kravtsov K.S., Radchenko I.V., Kulik S.P. Experimental adaptive quantum tomography of two-qubit states // Physical Review A, 2016. Vol. 93. № 1. P. 012103.
  6. Koksharov K.B., Bogdanov Yu.I., Bogdanova N.A., Kuznetsov Yu.A., Lukichev V.F. High-Precision Quantum Measurements of Qudits Taking into Account the Influence of Amplitude and Phase Relaxation // Russian Microelectronics. 2023. Vol. 52. № 1. S363–S368.
  7. Barenco A., Bennet C.H., Cleve R., DiVincenzo D.P., Margolus N., Shor P., Sleator T., Smolin T.A., Weinfurter H. Elementary gates for quantum computation // Phys. Rev. A. 1995. Vol. 52, № 5. P. 3457–3467.
  8. Di Y.M., Wei H.R. Synthesis of multivalued quantum logic circuits by elementary gates // Physical Review A. 2013. Vol. 87, № 1. P. 012325.
  9. Khaneja N., Glaser S.J. Cartan decomposition of SU(2n) and control of spin systems // Chemical Physics. 2001. Vol. 267, № 1–3. P. 11–23. doi: 10.1016/S0301-0104(01)00318-4
  10. Ландау Л.Д., Лифшиц Е.М.. Теоретическая физика. Механика. М.: Наука. 1988. 216 с.
  11. Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. – Cambridge: Cambridge University Press, 2010. 676 p.
  12. Durt T., Englert B.-G., Bengtsson I., and Życzkowski K., On mutually unbiased bases, Int. J. Quantum Inf., 2010, vol. 8, no. 4, pp. 535–640. https://doi.org/10.1142/s0219749910006502
  13. Brierley S., Weigert S., Bengtsson I. All mutually unbiased bases in dimensions two to five // Quantum Information & Computation. 2010. Vol. 10, № 9–10. P. 803–820.
  14. Богданов Ю.И., Богданова Н.А., Лукичев В.Ф. Введение в квантовые информационные технологии. Москва: Техносфера, 2025. 468 с.
  15. Bogdanov Yu.I., Brida G., Bukeev I.D., Genovese M., Kravtsov K.S., Kulik S.P., Moreva E.V., Soloviev A.A., Shurupov A.P. Statistical estimation of quantum tomography protocols quality // Physical Review A. 2011. Vol. 84. № 4. P. 042108.
  16. Холево А.С. Квантовые системы, каналы, информация. М.: МЦНМО, 2010. – 328 с.
  17. Życzkowski K., Sommers H.-J. Induced measures in the space of mixed quantum states // Journal of Physics A: Mathematical and General. 2001. Vol. 34. № 35. P. 7111–7125.
  18. Bogdanov Yu.I. Unified statistical method for reconstructing quantum states by purification // Journal of Experimental and Theoretical Physics. 2009. Vol. 108. P. 928–935.
  19. Bogdanov Yu.I., Bukeev I.D., Gavrichenko A.K. Studying adequacy, completeness, and accuracy of quantum measurement protocols // Optics and Spectroscopy. 2011. Vol. 111. P. 647–655.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).