Calculation of distributions of electron beam energy absorbed in PMMA and Si using various scattering models
- Autores: Rogozhin A.E.1, Sidorov F.A.1
-
Afiliações:
- NRC “Kurchatov Institute”
- Edição: Volume 54, Nº 1 (2025)
- Páginas: 9-18
- Seção: МОДЕЛИРОВАНИЕ
- URL: https://journals.rcsi.science/0544-1269/article/view/294474
- DOI: https://doi.org/10.31857/S0544126925010027
- EDN: https://elibrary.ru/GILEOW
- ID: 294474
Citar
Resumo
This paper describes the simulation of electron beam scattering in polymethylmethacrylate (PMMA) and silicon (Si) using Monte Carlo method. The simulation used various scattering models, including both elastic and inelastic models, with and without secondary electron generation taken into account. For each material, three combinations of scattering models were tested in simulation. As a result, the distributions of absorbed energy and scattering events along the coordinate were obtained. The analysis of these results revealed the characteristic features of each scattering model.
Palavras-chave
Texto integral

Sobre autores
A. Rogozhin
NRC “Kurchatov Institute”
Autor responsável pela correspondência
Email: rogozhin@ftian.ru
Физико-технологический институт им. К.А. Валиева РАН
Rússia, MoscowF. Sidorov
NRC “Kurchatov Institute”
Email: sidorov@ftian.ru
Физико-технологический институт им. К.А. Валиева РАН
Rússia, MoscowBibliografia
- Aktary M., Stepanova M., Dew S.K. Simulation of the spatial distribution and molecular weight of polymethylmethacrylate fragments in electron beam lithography exposures // J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct. Proc. Meas. Phen. 2006, V. 24, № 2. P. 768–779. https://doi.org/10.1116/1.2181580
- Cui Z. Monte Carlo simulation of electron beam lithography on topographical substrates // Microelectron. Eng. 1998, V. 41. P. 175–178. https://doi.org/10.1016/S0167-9317(98)00039-2
- Mladenov G.M., Vutova K.J., Koleva E.G. Computer Simulation of Electron and Ion Beam Lithography of Nanostructures // Phys. Chem. Sol. St. 2009, V. 3. P. 707–714. ISSN 1729-4428.
- Rogozhin A.E., and Sidorov F.A. E-beam lithography simulation techniques // Russ. Microelectron. 2020, V. 49, № 2. P. 108–122. https://doi.org/10.1134/S1063739720010096
- Rogozhin A.E., Sidorov F.A. Cross Sections of Scattering Processes in Electron-Beam Lithography // Russ. Microelectron. 2023. V. 52. № 2. P. 57–73. https://doi.org/10.1134/S1063739723700300
- Greeneich J.S. Developer Characteristics of Poly-(Methyl Methacrylate) Electron Resist // J. Electrochem. Soc. 1975, V. 122, № 7. P. 970. https://doi.org/10.1149/1.2134380
- Dapor M. Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization // Springer Nature 2023, V. 290. ISSN 0081-3869.
- Czyżewski Z. et al. Calculations of Mott scattering cross section // J. Appl. Phys. 1990, V. 68, № 7, P. 3066–3072. https://doi.org/10.1063/1.346400
- Seltzer S.M., Berger M.J. Evaluation of the collision stopping power of elements and compounds for electrons and positrons // Int. J. Appl. Radiat. Isot. 1982, V. 33, № 11. P. 1189–1218. https://doi.org/10.1016/0020-708X(82)90244-7
- Joy D.C., Luo S. An empirical stopping power relationship for low-energy electrons // Scanning 1989, V. 11, № 4. P. 176–180. https://doi.org/10.1002/SCA.4950110404
- Gryziński M. Classical theory of atomic collisions. I. Theory of inelastic collisions // Phys. Rev. 1965, V. 138, № 2A. https://doi.org/10.1103/PhysRev.138.A336
- Henke B.L., Gullikson E.M., Davis J.C. X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 eV, Z = 1–92 // At. Dat. Nucl. Dat. Tabl. 1993, V. 54, № 2. P. 181–342. https://doi.org/10.1006/adnd.1993.1013
- Ritsko J.J. et al. Electron energy loss spectroscopy and the optical properties of polymethylmethacrylate from 1 to 300 eV // J. Chem. Phys. 1978, V. 69, № 9. P. 3931–3939. https://doi.org/10.1063/1.437131
- Palik E.D. Handbook of Optical Constants of Solids // Handbook of Optical Constants of Solids ed. Palik E.D. USA: Academic Press, 1998. ISBN 978-0125444231
- Dapor M. Energy loss of fast electrons impinging upon polymethylmethacrylate // Nucl. Instrum. Meth. Phys. Res. B. 2015, V. 352. P. 190–194. https://doi.org/10.1016/j.nimb.2014.11.101
- Dapor M. Mermin Differential Inverse Inelastic Mean Free Path of Electrons in Polymethylmethacrylate // Front. Mater. 2015, V. 2. P. 1. https://doi.org/10.3389/fmats.2015.00027
- Ganachaud J.P., Mokrani A. Theoretical study of the secondary electron emission of insulating targets // Surf. Sci. 1995, V. 334, № 1. P. 329–341. https://doi.org/10.1016/0039-6028(95)00474-2
- Tan Z. et al. Monte-Carlo simulation of low-energy electron scattering in PMMA – Using stopping powers from dielectric formalism // Microelectron. Eng. 2005, V. 77, № 3. P. 285–291. https://doi.org/10.1016/j.mee.2004.11.009
- Lotz W. Subshell Binding Energies of Atoms and Ions from Hydrogen to Zinc // J. Opt. Soc. Am. 1968, V. 58, № 7. P. 915. https://doi.org/10.1364/JOSA.58.000915
- Valkealahti S., Nieminen R.M. Monte-Carlo calculations of keV electron and positron slowing down in solids // Appl. Phys. A 1983, V. 32, № 2. P. 95–106. https://doi.org/10.1007/BF00617834
- de Vera P., Abril I., Garcia-Molina R. Inelastic scattering of electron and light ion beams in organic polymers // J. Appl. Phys. 2011, V. 109, № 9. P. 094901. https://doi.org/10.1063/1.3581120
- Sidorov F. et al. Direct Monte-Carlo simulation of dry e-beam etching of resist // Microelectron. Eng. 2020, Vol. 227. P. 111313.crystal at direct and alternating current // Physics of the Solid State. 2022. V. 64. No 4. P. 426–433. https://doi.org/10.1016/j.mee.2020.111313
Arquivos suplementares
