Electron Transport in a Bipolar Transistor with a Superlattice in the Emitter

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A set of transfer and output current-voltage characteristics of a bipolar transistor with a short-period superlattice in the emitter region has been calculated. It is shown that the presence of a superlattice in the tr ansistor structure leads to the fo rmation of a negative differential conductivity region, which makes it possible to implement not only amplification, but also the generation and multiplication of high-frequency oscillations.

About the authors

O. L. Golikov

Lobachevsky State University of Nizhny Novgorod (NNSU)

Author for correspondence.
Email: khazanova@phys.unn.ru
Russian Federation, Nizhny Novgorod

I. Yu. Zabavichev

Lobachevsky State University of Nizhny Novgorod (NNSU)

Email: khazanova@phys.unn.ru
Russian Federation, Nizhny Novgorod

A. S. Ivanov

Lobachevsky State University of Nizhny Novgorod (NNSU)

Email: khazanova@phys.unn.ru
Russian Federation, Nizhny Novgorod

S. V. Obolensky

Lobachevsky State University of Nizhny Novgorod (NNSU)

Email: khazanova@phys.unn.ru
Russian Federation, Nizhny Novgorod

E. S. Obolenskaya

Lobachevsky State University of Nizhny Novgorod (NNSU)

Email: khazanova@phys.unn.ru
Russian Federation, Nizhny Novgorod

D. G Paveliev

Lobachevsky State University of Nizhny Novgorod (NNSU)

Email: khazanova@phys.unn.ru
Russian Federation, Nizhny Novgorod

A. A. Potekhin

Lobachevsky State University of Nizhny Novgorod (NNSU)

Email: khazanova@phys.unn.ru
Russian Federation, Nizhny Novgorod

A. S. Puzanov

Lobachevsky State University of Nizhny Novgorod (NNSU)

Email: khazanova@phys.unn.ru
Russian Federation, Nizhny Novgorod

E. A. Tarasova

Lobachevsky State University of Nizhny Novgorod (NNSU)

Email: khazanova@phys.unn.ru
Russian Federation, Nizhny Novgorod

S. V. Khazanova

Lobachevsky State University of Nizhny Novgorod (NNSU)

Email: khazanova@phys.unn.ru
Russian Federation, Nizhny Novgorod

References

  1. Kholod A.N., Liniger M., Zaslavsky A., Arnaud d’Avitaya F. Cascaded resonant tunneling diode quantizer for analog-to-digital flash conversion // Appl. Phys. Lett., 79(1), 129 (2001).
  2. Ourednik P., Feiginov M. Double-resonant-tunneling-diode patch-antenna oscillators // Appl. Phys. Lett., 120(18), 183501 (2022).
  3. Reed M.A., Frensley W.R., Matyi R.J., Randall J.N., Seabaugh A.C. Realization of a three‐terminal resonant tunneling device: The bipolar quantum resonant tunneling transistor // Appl. Phys. Lett., 54(11), 1034 (1989).
  4. Tsai J.H. Application of an AlGaAs/GaAs/InGaAs heterostructure emitter for a resonant-tunneling transistor // Appl. Phys. Lett., 75(17), 2668 (1999).
  5. Popov V.G. Field-effect transistor with two-dimensional systems of carriers in the gate and channel // Semiconductors, 50(2), 236 (2016).
  6. Liu W.C., Lour W.S. Modeling the DC Performance of Heterostructure-Emitter Bipolar Transistor // Appl. Phys. Lett., 70(1), 486 (1991).
  7. Tsai J.H. Multiple negative differential resistance of InP/InGaAs superlattice-emitter resonant-tunneling bipolar transistor at room temperature // Appl. Phys. Lett., 83(13), 2695 (2003).
  8. Tsai J.H., Huang C.H., Lour W.S., Chao Y.T., Ou-Yang J.J., Jhou J.C. High-performance InGaP/GaAs superlattice — emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode // Thin Solid Films, 521, 168 (2012).
  9. Pavelyev D.G., Vasilev A.P., Kozlov V.A., Obolensky E.S., Obolensky S.V., Ustinov V.M. Increase of Self-Oscillation and Transformation Frequencies in THz Diodes // IEEE Transactions on Terahertz Science and Technology, 8(2), 231 (2018).
  10. Sun J.P., Mains R.K., Yang K., Haddad G.I. A self‐consistent model of Γ‐X mixing in GaAs/AlAs/GaAs quantum well structures using the quantum transmitting boundary method // J. Appl. Phys., 74(8), 5053 (1993).
  11. Ohnishi H., Inata T., Muto S., Yokoyama N., Shibatomi A. Self‐consistent analysis of resonant tunneling current // Appl. Phys. Lett., 49(19), 1248 (1986).
  12. Cahay M., McLennan M., Datta S., Lundstrom M.S. Importance of space‐charge effects in resonant tunneling devices // Appl. Phys. Lett., 50(10), 612 (1987).
  13. Cardona M.P.Yu. Fundamentals of Semiconductor Physics. M.: FIZMATLIT, 2002. 560 p.
  14. Zee С. Physics of Semiconductor Devices (M.: Mir, 1984). Book 1. 456 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Zone diagram of a bipolar transistor with a superlattice in the emitter junction (a): (-) - energy of the valence band ceiling EV and the bottom of the G-valley of the conduction band ; ( ) - energy of the bottom of the X-valley of the conduction band ; ( ) - Fermi energy EF is taken as the zero energy level; electron passage coefficient through a short-period superlattice at zero bias for the inter-valley interaction constant α = 0.7 eV Å (b)

Download (245KB)
3. Fig. 2. Volt-ampere characteristic of a short-period superlattice with transition layers: (o) - experiment [9]; (-) - calculation

Download (98KB)
4. Fig. 3. Family of transfer voltammetry characteristics of bipolar transistor (a): (- - - - -) - without superlattice; (-) - with superlattice in the emitter junction. The collector-emitter voltage UCE is 0.2, 0.4 and 0.6 V; family of output voltammetric characteristics of the bipolar transistor (b): (- - - - -) - without superlattice; (-) - with superlattice in the emitter junction. The base current IV is 1-5 µA

Download (261KB)
5. Fig. 4. Dependence of the voltage drop across the superlattice (USL) on the base current at different collector-emitter voltages: UCE is 0.4, 0.6, 0.8 and 1.0 V

Download (96KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies