Modeling of the Electronic Properties of M-Doped Supercells (М = Zr, Nb) with a Monoclinic Structure For Lithium-Ion Batteries

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Tx phase diagram of the quasi-binary system Li2O–TiO2 was refined and the isothermal cross section of the ternary Li–Ti–O system at 298 K was constructed. The equilibrium phase regions of Li–Ti–O in the solid state are determined with the participation of boundary binary oxides and four intermediate ternary compounds Li4TiO4, Li2TiO3, Li4Ti5O12 and Li2Ti3O7. Using the density functional theory (DFT LSDA) method, the formation energies  of the indicated ternary compounds of the Li2O–TiO2 system were calculated and the dependence of ΔfE on the composition was plotted.

Ab initio modeling of supercells based on M-doped  anode material based on the Li4Ti5O12 (LTO) compound with a monoclinic structure (m) was carried out. It has been shown that partial substitution of cations and oxygen in the m-LTO–M structure increases the efficiency of a lithium-ion battery (LIB) both by stabilizing the structure and by increasing the diffusion rate of Li+. Due to the contribution of d-orbitals (Zr4+-4d, Nb3+-4d orbitals) to the exchange energy, partial polarization of electronic states occurs and the electronic conductivity of m-LTO–M increases. The formation of oxygen vacancies in the m-LTO–M crystal lattice, as in binary oxides, can create donor levels and improve the transport of Li+ and electrons.

M-doping of the m-LTO structure by replacing cations, in particular lithium, with Zr or Nb atoms noticeably reduces the band gap (Eg) of m-LTO–M supercells. In this case, in the m-LTO–M band structure, the Fermi level shifts to the conduction band and the band gap narrows. Decreasing the Eg value increases the electronic and lithium-ion conductivity of m-LTO–M supercells.

Full Text

Restricted Access

About the authors

M. M. Asadov

Nagiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of Azerbaijan; Azerbaijan State Oil and Industry University

Author for correspondence.
Email: mirasadov@gmail.com
Azerbaijan, Baku; Baku

S. O. Mammadova

Institute of Physics of the Ministry of Science and Education of Azerbaijan; Khazar University

Email: mirasadov@gmail.com
Azerbaijan, Baku; Baku

S. N. Mustafaeva

Institute of Physics of the Ministry of Science and Education of Azerbaijan

Email: mirasadov@gmail.com
Azerbaijan, Baku

S. S. Huseynova

Institute of Physics of the Ministry of Science and Education of Azerbaijan; Khazar University

Email: mirasadov@gmail.com
Azerbaijan, Baku; Baku

V. F. Lukichev

Valiev Physics and Technology Institute of the Russian Academy of Sciences

Email: lukichev@ftian.ru
Russian Federation, Moscow

References

  1. Reddy M.V., Subba Rao G.V., Chowdari B.V.R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries // Chemical Reviews 2013. V. 113. No. 7. P. 5364 –5457. https://doi.org/10.1021/cr3001884
  2. Tanaka S., Kitta M., Tamura T., Maeda Y., Akita T., Kohyama M. Atomic and electronic structures of Li4Ti5O12/Li7Ti5O12 (001) interfaces by first-principles calculations // J Mater Sci. 2014. https://doi.org/10.1007/s10853-014-8102-x
  3. Ikezawa A., Fukunishi. G, Okajima T., Kitamura F., Suzuki K., Hirayama M., Kanno R., Arai H. Performance of Li4Ti5O12-based Reference Electrode for the Electrochemical Analysis of Allsolid-state Lithium-ion Batteries // Electrochemistry Communications. 2020. V. 116. Р. 106743. https://doi.org/10.1016/j.elecom.2020.106743
  4. Ziebarth B., Klinsmann M., Eckl T., Elsässer C. Lithium diffusion in the spinel phase Li4Ti5O12 and in the rocksalt phase Li7Ti5O12 of lithium titanate from first principles // Physical Review B. 2014. V. 89. No. 17. P. 174301–7. https://doi.org/10.1103/physrevb.89.174301
  5. Xu G., Han P., Dong S., Liu H., Cui G., Chen L. Li4Ti5O12-based energy conversion and storage systems: status and prospects // Coordination Chemistry Reviews. 2017. S0010854517301121. P. 1–158. https://doi.org/10.1016/j.ccr.2017.05.0066.
  6. Zhang H., Yang Y., Xu H., Wang L., LX., He X. Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries // InfoMat. 2022. 4: e12228. P. 1–29. https://doi.org/10.1002/inf2.12228
  7. Asadov M.M., Mammadova S.O., Huseynova S.S., Mustafaeva S.N., Lukichev V.F. Simulation of the Adsorption and Diffusion of Lithium Atoms on Defective Graphene for a Li-Ion Battery // Russian Microelectronics. 2023. V. 52. No. 3. P. 167–185. https://doi.org/10.1134/S1063739723700336
  8. Zhao B., Ran R., Liu M., Shao Z. A comprehensive review of Li4Ti5O12 based electrodes for lithium-ion batteries: The latest advancements and future perspectives // Materials Science and Engineering R. 2015. V. 98. P. 1–71. https://doi.org/10.1016/j.mser.2015.10.001
  9. Asadov M.M., Mammadova S.O., Guseinova S.S., Mustafaeva S.N., Lukichev V.F. Ab initio calculation of the band structure and properties of modifications of the Ti3Sb compound doped with lithium // Physics of the Solid State. 2022. V. 64. No. 11. P. 1594–1609. https://doi.org/10.21883/PSS.2022.11.54179.395
  10. Asadov M.M., Mammadova S.O., Guseinova S.S., Mustafaeva S.N., Lukichev V.F. Modeling of Gold Adsorption by the Surface of Defect Graphene // Russian Microelectronics. 2022. V. 51. No. 6. P. 413–425. https://doi.org/10.1134/S1063739722700159
  11. Asadov M.M., Mammadova S.O., Guseinova S.S., Mustafaeva S.N., Lukichev V.F. Modeling structural and energy characteristics of atoms in a GaS2D-crystal with point defects // Physics of the Solid State. 2022. V. 64. No. 1. P. 44–57. https://doi.org/10.21883/PSS.2022.01.52487.182
  12. Kleykamp H. Phase equilibria in the Li—Ti—O system and physical properties of Li2TiO3 // Fusion Engineering and Design. 2002. V. 61–62. P. 361–366. https://doi.org/10.1016/s0920-3796(02)00120-5
  13. Okamoto H. Li-O (Lithium-Oxygen) // Journal of Phase Equilibria and Diffusion. 2013. V. 34. No. 2. P. 169. https://doi.org/ 10.1007/s11669-012-0182-1
  14. Okamoto H. O-Ti (Oxygen-Titanium) // Journal of Phase Equilibria and Diffusion. 2011. V. 32. No. 5. P. 473–474. https://doi.org/10.1007/s11669-011-9935-5
  15. Bale C.W. The Li-Ti (Lithium-Titanium system). Bulletin of Alloy Phase Diagrams. 1989. V. 10. No. 2. P. 135–138. https://doi.org/10.1007/bf02881424
  16. Asadov M.M., Kuli-zade E.S. Phase equilibria, thermodynamic analysis and electrical properties of the Li2O—Y2O3—B2O3 system // Journal of Alloys and Compounds. JALCOM (IF 4.650) Pub Date: 2020–05–23. https://doi.org/10.1016/j.jallcom.2020.155632
  17. https://next-gen.materialsproject.org/materials/mp-685194. mp-685194: Li4Ti5O12 (Monoclinic, C2/c, 15).
  18. Li X., Qu M., Yu Z. Structural and electrochemical performances of Li4Ti5–xZrxO12 as anode material for lithium-ion batteries // Journal of Alloys and Compounds. 2009. V. 487. No. 1–2. P. L12—L17. https://doi.org/110.1016/j.jallcom.2009.07.176
  19. Kim S.-K., Kwon E.-S., Kim T.-H., Moon J., Kim J. Effects of atmospheric Ti (III) reduction on Nb2O5-doped Li4Ti5O12 anode materials for lithium ion batteries. Ceramics International. 2014. V. 40. No. 6. P. 8869–8874. https://doi.org/10.1016/j.ceramint.2013.12.132
  20. Wang L., Zhang Y. M., Guo H.Y., Li J., Stach E.A., Tong X., Takeuchi E.S., Takeuchi K.J., Liu P., Marschilok A.C., Wong S.S. Structural and Electrochemical Characteristics of Ca-Doped “Flowerlike” Li4Ti5O12 Motifs as High-Rate Anode Materials for Lithium-Ion Batteries // Chem Mater. 2018. V. 30. No. 3. P. 671–684.21.
  21. Tsai P., Hsu W-D., Lin S. Atomistic Structure and Ab Initio Electrochemical Properties of Defect Spinel for Li Ion Batteries // Journal of the Electrochemical Society. 2014. V. 161. No. 3. A439—A444. https://doi.org/10.1149/2.095403jes
  22. Ouyang C.Y., Zhong Z.Y., Lei M.S. Ab initio studies of structural and electronic properties of spinel // Electrochemistry Communication. 2007. V. 9. No 5. P. 1107–1112. https://doi.org/10.1016/j.elecom.2007.01.013
  23. Ding Z., Zhao L., Suo L., Jiao Y., Meng S., Hu Y-S., Wang Z., Chen L. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of in lithium ion batteries: a combined experimental and theoretical study // Physical Chemistry Chemical Physics. 2011. V. 13. No. 33. P. 15127–15133. https://doi.org/10.1039/C1CP21513B
  24. Nguyen T.D.H., Pham H.D., Lin S.-Y., Lin M.-F. Featured properties of Li+-based battery anode: // RSC Advances. 2020. V. 10. No. 24. P. 14071–14079. https://doi.org/10.1039/D0RA00818D
  25. https://next-gen.materialsproject.org/materials/mp-772925: (Triclinic, P-1, 2) (materialsproject.org)
  26. Yeh J.-J., Lindau I. Atomic subshell photoionization cross sections and asymmetry parameters: 1≤Z≤103. 1985. V. 32. No. 1. P. 1–155. https://doi.org/10.1016/0092-640x(85)90016-627.
  27. Yeh J.-J. Atomic Calculation of Photoionization Crosssection and Asymmetry Parameters. Gordon and Breach. New Jersey, 1993.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Crystal structure of Li4Ti5O12 (LTO): a - cubic spinel modification c-LTO; b - monoclinic modification m-LTO; c - triclinic modification t-LTO

Download (547KB)
3. Fig. 2. Our refined phase diagram (a) of the Li2O-TiO2 system: 1 - Li2O + Li4TiO4; 2 - Li2O + L (liquid); 3 - L + Li4TiO4; 4 - Li4TiO4 + β-Li2TiO3 (ss), where - solid solutions; 5 - Li4TiO4 + γ-Li2TiO3 (ss); 6 - L + γ-Li2TiO3 (ss); 7 - γ-Li2TiO3 (ss); 8 - γ-Li2TiO3 (ss) + β - Li2TiO3; 9 - β-Li2TiO3 (ss); 10 - β-Li2TiO3 (ss) + Li4Ti5O12 (LTO); 11 - γ-Li2TiO3 (ss) + (LTO); 12 - γ-Li2TiO3 (ss) + Li2Ti3O7; 13 - Li2Ti3O7; 14 - β-Li2Ti3O7 (ss) + LTO; 15 - β-Li2Ti3O7 (ss) + TiO2; 16 - γ-Li2Ti3O7 (ss) +TiO2; 17 - L + TiO2; 18 - γ-Li2Ti3O7 (ss) + L; 19 - γ-Li2TiO3 (ss) + L; preliminary isothermal cross section (b) of the Li-Ti-O system at 298 K constructed by us; concentration dependence of the energy of formation of ternary compounds (c) in the Li2O-TiO2 system. The calculated values for the phases Li4TiO4, Li2TiO3, Li4Ti5O12 lie on the convex hull and are thermodynamically stable

Download (387KB)
4. Fig. 3. Atomic structure with monoclinic structure m-LTO-M: a - m-LTO supercell; b - m-LTO-Zr supercell; c - m-LTO-Nb supercell; d - convection supercell m-LT-Nb

Download (615KB)
5. Fig. 4. Zone structure of the m-LTO supercell (a); DOS of the m-LTO supercell (b). The Fermi energy is set equal to 0 eV

Download (370KB)
6. Fig. 5. Li4Ti5O12 unit cell with cubic structure (a), where green tetrahedrons and green octahedrons are Li ions at position 8a, blue octahedrons are Li and Ti ions at position 16d, and red spheres are oxygen ions at position 32e [21]; atomic projection of the density of states of the Ti atom in c-LTO (b) calculated using a 1 × 1 × 3 DFT GGA supercell [22]; five d-orbitals of the atom (c) having different three-dimensional orientations. The orbitals are arranged in the diagram as their energy increases; diagram of Ti-3d(t2g) orbitals of the titanium atom in LTO (d). The orbitals are arranged in the diagram as their energy increases

Download (674KB)
7. Fig. 6. Zone structures of 2 × 2 × 2 doped m-LTO-Zr (Nb) supercells with monoclinic structure calculated by the DFT LSDA method: a - m-LTO-Zr supercell; b - m-LTO-Nb supercell. The Fermi energy is set equal to 0 eV on the energy scale

Download (383KB)
8. Fig. 7. Total and partial densities of electronic states (DOS and PDOS) of 2 × 2 × 2 supercells based on m-LTO with monoclinic structure doped with Zr (or Nb): a - DOS of m-LTO supercell doped with Zr; b - PDOS of m-LTO supercell doped with Zr (Zr - PDOS); c - DOS of m-LTO supercell doped with Nb; d - PDOS of m-LTO supercell doped with Nb (Nb - PDOS). The Fermi energy is equal to 0 eV on the energy scale

Download (545KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».