Structuring of the Surface of Thin Carbon Films During Activation by Microsecond Current Pulses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of current activation by electric pulse breakdown on changes in surface morphology and emission characteristics of a field emission cathode made on the basis of carbon films obtained by deposition in a microwave gas discharge plasma was studied. Current activation of these films was carried out by applying voltage pulses of microsecond duration until an electrical breakdown occurred. It is shown that during activation, the morphology of the film surface in the breakdown region changes with the formation of a micro-sized emitting structure, which significantly improves the field emission characteristics of cathodes based on carbon films.

About the authors

D. V. Nefedov

Saratov Branch of Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Author for correspondence.
Email: nefedov_dv@rambler.ru
Russian Federation, Saratov

N. O. Shabunin

Saratov State University

Email: nefedov_dv@rambler.ru
Russian Federation, Saratov

D. N. Bratashov

Saratov State University

Email: nefedov_dv@rambler.ru
Russian Federation, Saratov

References

  1. Egorov N.V., Sheshin E.P. Carbon-Based Field Emitters: Properties and Applications // Topics in Applied Physics. 2020. V. 135. P. 449–528. https://doi.org/10.1007/978-3-030-47291-7_10.
  2. Sheshin E.P. Surface structure and field emission properties of carbon materials. M.: Publishing house. MIPT, 2001. 288 p. (in Russian).
  3. Obraztsov A.N., Pavlovskii I.Y., Volkov A.P. Field electron emission in graphite-like films // Tech. Phys. 46, 1437–1443 (2001). https://doi.org/10.1134/1.1418509
  4. Wächter R., Cordery A., Proffitt S., Foord J. Influence of film deposition parameters on the field emission properties of diamond-like carbon films // Diamond and Related Materials. 1998. V. 7. № 5. P. 687–691. https://doi.org/10.1016/S0925-9635(97)00279-3.
  5. Xiomara C., Huaizhi G., Bo G., Lei A., Guohua C., Otto Z. A carbon nanotube field emission cathode with high current density and long-term stability // Nanotechnology. 2009. V. 20. № 32. P. 325–707. https://doi.org/10.1088/0957-4484/20/32/325707.
  6. Vink J., Gillies M., Kriege J. Enhanced field emission from printed carbon nanotubes by mechanical surface modification // Appl. Phys. Lett. 2003. V. 83. № 17. P. 3552–3554. https://doi.org/10.1063/1.1622789.
  7. Weihua L., Xin L., Changchun Zh. Improving the emission characteristics of a carbon nanotube cathode in an aging process // Ultramicroscopy. 2007. V. 107. № 9. P. 833–837. https://doi.org/10.1016/j.ultramic.2007.02.015.
  8. Guo P., Chen T., Chen Y., Zhang Z., Feng T., Wang L., Lin L., Sun Z., Zheng Z. Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters // Solid-State Electronics. 2008. V. 52. № 6. P. 877–881. https://doi.org/10.1016/j.sse.2008.01.023.
  9. Bobkov A.F., Davidov E.V., Zaitsev S.V., Karpov A.V., Kozodaev M.A., Nikolaeva I.N., Popov M.O., Skorokhodov E.N., Suvorov A.L., Cheblukov Yu.N. Some aspects of the use of carbon materials in field electron emission cathodes // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2001. V. 19. № 32. P. 32–38. https://doi.org/10.1116/1.1340017.
  10. Li J.J., Gu C.Z., Peng H.Y., Wu H.H., Zheng W.T., Jin Z.S. Field emission properties of diamond-like carbon films annealed at different temperatures // Applied Surface Science. 2005. V. 251. № 1–4. P. 236–241. https://doi.org/10.1016/j.apsusc.2005.03.102.
  11. Gröning O., Küttel O., Schaller E., Gröning P., Schlapbach L. Vacuum arc discharges preceding high electron field emission from carbon films // Appl. Phys. Lett. 1996. V. 69. № 4. P. 476–478. https://doi.org/10.1063/1.118145.
  12. Gröning O., Küttel O., Schaller E., Gröning P., Schlapbach L. Field emission from DLC films // Applied Surface Science. 1997. V. 111. P. 135–139. https://doi.org/10.1016/S0169-4332(96)00713-1.
  13. Evtukh A., Litovchenko V., Semenenko M., Yilmazoglu O., Mutamba K., Hartnagel H., Pavlidis D. Formation of conducting nanochannels in diamond-like carbon films // Semiconductor science and technology. 2006. V. 21. P. 1326–1330. https://doi.org/10.1088/0268-1242/21/9/018.
  14. Semenenko M., Okrepka G., Yilmazoglu O., Hartnagel H., Pavlidis D. Electrical conditioning of diamond-like carbon films for the formation of coated field emission cathodes // Applied Surface Science. 2010. V. 257. № 2. P. 388–392. https://doi.org/10.1016/j.apsusc.2010.06.089.
  15. Jarvisa J., Andrews H., Brau C., Choi B., Davidson J., Kang W., Wong Y. Uniformity conditioning of diamond field emitter arrays // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2009. V. 27. P. 2264. https://doi.org/10.1116/1.3212915.
  16. Dennison J., Holtz M., Swain G. Raman Spectroscopy of Carbon Materials // Journal Articles. 1996. V. 11. № 8. P. 38–45.
  17. Cançado L., Takai K., Enoki T., Endo M., Kim Y. Mizusaki H. et al. General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy // Appl. Phys. Lett. 2006Appl. Phys. Lett. 2006. V. 88. № 16. P. 163106.
  18. Eidelman E.D., Arkhipov A.V. Field emission from carbon nanostructures: models and experiment // Phys. Usp. 63 648–667 (2020); https://doi.org/10.3367/UFNe.2019.06.038576.
  19. Nefedov D.V., Yafarov R.K. Pulsed vacuum-plasma breakdown during high-current field emission of planar-end nanodiamond-graphite cathodes. Abstracts of the XV All-Russian Conference of Young Scientists “Nanoelectronics, Nanophotonics and Nonlinear Physics”. SF IRE. V. A. Kotelnikov RAS. Saratov, 2020. Р. 184–185.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Occurrence of extreme initial current on the sample with resistance 29 kOhm (a), the beginning of current flow, dots - experimental data, solid line - approximation by exponential dependence (b)

Download (141KB)
3. Fig. 2. Optical microscopy of the initial breakdown area (a) and electron microscopy of the initial breakdown area focusing on surface formations (b). Sample with a resistance of 29 kOhm

Download (717KB)
4. Fig. 3. Optical microscopy of the initial breakdown area (a) and electron microscopy of the initial breakdown area focusing on surface formations (b). Sample with 230 kOhm resistance

Download (871KB)
5. Fig. 4. Raman spectra for three samples with resistances: 1 - 29 kOhm, 2 - 72 kOhm, 3 - 230 kOhm (a); ratio of D and G band intensities (b)

Download (223KB)
6. Fig. 5. VAC of samples of different resistances before breakdowns occurrence: 1 - 29 kOhm, 3 - 72 kOhm, 5 - 230 kOhm, and after: 2 - 29 kOhm, 4 - 72 kOhm, 6 - 230 kOhm (a); change of maximum current after breakdown as a function of sample resistance (b)

Download (196KB)
7. Fig. 6. Optical microscopy of the film surface after breakdown (a), electron microscopy of the array of surface formations (b). Sample with a resistance of 29 kOhm

Download (826KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies