Prototypes of devices for heterogeneous hybrid semiconductor electronics with an embedded biomolecular domain

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A macromolecular system embedded in a semiconductor microelectronic device is considered as a biomolecular nano- or micro-sized domain that performs the functions of converting acoustic and electromagnetic signals. The issues of the choice of substances, the dynamic and structural-functional state of the domain, as well as the physical foundations of its interaction with matrix elements are discussed. The process of excitation of forced vibrations in amino acid molecules (for example, glycine, tryptophan, diphenyl-L-alanine) under the influence of short (10–100 ps) packets of electrical signals in the IR range with a frequency in the range of 1–125 THz was studied by the method of supercomputer nonequilibrium modeling of molecular dynamics. The acoustoelectric interpretation of oscillation generation was carried out using a unified equivalent circuit of the peptide group. Examples of developed prototypes of heterogeneous devices are given. It is concluded that embedded biomolecular domains, presented as a multifunctional element base, are promising for signal conversion in hybrid microelectronics.

作者简介

M. Baranov

Peter the Great St.Petersburg Polytechnic University

Email: baranovma1993@gmail.com
Russia

E. Karseeva

Peter the Great St.Petersburg Polytechnic University

Email: baranovma1993@gmail.com
Russia

O. Tsybin

Peter the Great St.Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: baranovma1993@gmail.com
Russia

参考

  1. Roco M.C. The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years // J. Nanoparticle Research. 2011. V. 13. № 2. P. 427–445. https://doi.org/10.1007/s11051-010-0192-z
  2. IEEE International Roadmap for Devices and Systems – IEEE IRDS. 2020. Accessed: Apr. 04, 2023. [Online]. Available: https://irds.ieee.org/.
  3. Apter B., Lapshina N., Handelman A., Fainberg B.D., Rosenman G. Peptide Nanophotonics: From Optical Waveguiding to Precise Medicine and Multifunctional Biochips // Small. 2018. V. 14. № 34. https://doi.org/10.1002/smll.201801147
  4. Heni W. et al. Silicon-Organic and Plasmonic-Organic Hybrid Photonics // American Chemical Society. 2017. V. 4. № 7. P. 1576–1590. https://doi.org/10.1021/acsphotonics.7b00224
  5. Пугачев А., Ожогин И., Козленко А. Новый негативно фотохромный спиропиран для элементов молекулярной электроники и фотовольтаики. Проблемы разработки перспективных микро- и наноэлектронных систем. 2021. V. 4. P. 155–161.
  6. Pugachev A.D. et al. New spiropyrans for creating elements of molecular electronics and photonics // Probl. Adv. micro- Nanoelectron. Syst. Dev. 2020. P. 139–146. https://doi.org/10.31114/2078-7707-2020-3-139-146
  7. Huang X., Li T. Recent progress in the development of molecular-scale electronics based on photoswitchable molecules // J. Materials Chemistry C. 2020. V. 8. № 3. P. 821–848. https://doi.org/10.1039/c9tc06054e
  8. Liu G. Grand Challenges in Biosensors and Biomolecular Electronics // Front. Bioeng. Biotechnol. 2021. V. 9. https://doi.org/10.3389/fbioe.2021.707615
  9. Величко Е.Н., Цыбин О.Ю. Гибридная биомолекулярная электроника: монография-СПб.: Политех-Пресс, 2021. 261 с. ISBN 978-5-7422-7302-8
  10. Dunn K., Trefzer M., Johnson S., Tyrrell A. Towards a Bioelectronic Computer: A Theoretical Study of a Multi-Layer Biomolecular Computing System That Can Process Electronic Inputs // Int. J. Mol. Sci. 2018. V. 19. № 9. P. 2620. https://doi.org/10.3390/ijms19092620
  11. Ing N.L., El-Naggar M.Y., Hochbaum A.I. Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials // J. Physical Chemistry B. 2018. V. 122. № 46. P. 10403–10423. https://doi.org/10.1021/acs.jpcb.8b07431
  12. Schiattarella C. et al. Solid-state optical properties of self-assembling amyloid-like peptides with different charged states at the terminal ends // Sci. Rep. 2022. V. 12. № 1. P. 1–10. https://doi.org/10.1038/s41598-021-04394-2
  13. Kovalchuk M.V. et al. Structural characteristics of lysozyme Langmuir layers grown on a liquid surface from an oligomeric mixture formed during the early stages of lysozyme crystallization // Thin Solid Films. 2019. V. 677. P. 13–21. https://doi.org/10.1016/j.tsf.2019.02.051
  14. Бойкова А.С. и др. Получение многослойных пленок на основе белка лизоцима и ионов осадителя (йода и калия) на кремниевой подложке модифицированным методом Ленгмюра–Шеффера // Кристаллография. 2018. Т. 63. № 5. С. 703–707. https://doi.org/10.1134/s0023476118050065
  15. Ковальчук М. и др. Модификация метода Ленгмюра-Шеффера для получения упорядоченных белковых пленок // Кристаллография. 2017. Т. 62. № 4. С. 650–656.
  16. Baranov M., Tsybin O., Velichko E. Structured biomolecular films for microelectronics // St. Petersbg. Polytech. State Univ. J. Phys. Math. 2021. V. 14. № 1. P. 85–99. https://doi.org/10.18721/JPM.14106
  17. Velichko E., Zezina T., Baranov M., Nepomnyashchaya E., Tsybin O. Dynamics of Polypeptide Cluster Dipole Moment for Nano Communication Applications // Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2018. V. 11118 LNCS. P. 675–682. https://doi.org/10.1007/978-3-030-01168-0_62
  18. Velichko E., Zezina T., Cheremiskina A., Tsybin O. Nano communication device with embedded molecular films: Effect of electromagnetic field and dipole moment dynamics,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 2015. V. 9247. P. 765–771. https://doi.org/10.1007/978-3-319-23126-6_71
  19. Tsybin O. Nano-device with an embedded molecular film: Mechanisms of excitation // in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2015. V. 9247. P. 772–777. https://doi.org/10.1007/978-3-319-23126-6_72
  20. Непомнящая Э.К., Баранов М.А., Цыбин О.Ю. Компьютерная резонансная динамика молекулы глицина в электрическом поле инфракрасного диапазона // Письма в ЖТФ. 2023. Т. 49. № 7. С. 8–11. https://doi.org/10.21883/PJTF.2023.07.54913.19435
  21. Fröhlich H. The Biological Effects of Microwaves and Related Questions. Elsevier, UK, 1980. P. 85–152.
  22. Millefiori S., Alparone A., Millefiori A., Vanella A. Electronic and vibrational polarizabilities of the twenty naturally occurring amino acids // Biophys. Chem. 2008. V. 132. № 2–3. P. 139–147. https://doi.org/10.1016/j.bpc.2007.11.003
  23. Wang W.N., Li H.Q., Zhang Y., Zhang C.L. Correlations between terahertz spectra and molecular structures of 20 standard α-amino acids // Acta Phys. Chim. Sin. 2009. V. 25. № 10. P. 2074–2079. https://doi.org/10.3866/pku.whxb20090931
  24. Barth A., Zscherp C. What vibrations tell us about proteins // Q. Rev. Biophys. 2002. V. 35. № 4. P. 369–430. https://doi.org/10.1017/S0033583502003815
  25. Mohamed M.E., Mohammed A.M.A. Experimental and Computational Vibration Study of Amino Acids // Int. Lett. Chem. Phys. Astron. 2013. V. 15. № 1. P. 1–17. https://doi.org/10.56431/p-177d2l
  26. Matei A., Drichko N., Gompf B., Dressel M. Far-infrared spectra of amino acids // Chem. Phys. 2005. V. 316. № 1–3. P. 61–71. https://doi.org/10.1016/j.chemphys.2005.04.033
  27. Wolpert M., Hellwig P. Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm–1 // Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006. V. 64. № 4. P. 987–1001. https://doi.org/10.1016/j.saa.2005.08.025
  28. Zhang F., Tominaga K., Hayashi M., Wang H.-W. Low-frequency vibration study of amino acids using terahertz spectroscopy and solid-state density functional theory // in Infrared, Millimeter-Wave, and Terahertz Technologies III. 2014. V. 9275. P. 92750D. https://doi.org/10.1117/12.2071528
  29. Yi W. et al. Broadband terahertz spectroscopy of amino acids // Instrum. Sci. Technol. 2017. V. 45. № 4. P. 423–439. https://doi.org/10.1080/10739149.2016.1270961
  30. Зезина Т.И., Цыбин О.Ю. Субпикосекундная динамика дипольного момента молекулярных полиаланинов // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2017. Т. 10. № 4. С. 100–110. https://doi.org/10.18721/JPM.10408
  31. Deniz E. et al. Through bonds or contacts? Mapping protein vibrational energy transfer using non-canonical amino acids // Nat. Commun. 2021. V. 12. № 1. P. 3284. https://doi.org/10.1038/s41467-021-23591-1
  32. Mancini T., Mosetti R., Marcelli A., Petrarca M., Lupi S., D’arco A. Terahertz Spectroscopic Analysis in Protein Dynamics: Current Status // Radiation. 2022. V. 2. № 1. P. 100–123. https://doi.org/10.3390/radiation2010008
  33. English N.J., Waldron C.J. Perspectives on external electric fields in molecular simulation: Progress, prospects and challenges // Phys. Chem. Chem. Phys. 2015. V. 17. № 19. P. 12407–12440. https://doi.org/10.1039/c5cp00629e
  34. Kelly C.M. et al. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field // Biophys. Chem. 2015. V. 196. P. 16–24. https://doi.org/10.1016/j.bpc.2014.08.009
  35. Reale R., English N.J., Marracino P., Liberti M., Apollonio F. Dipolar response and hydrogen-bond kinetics in liquid water in square-wave time-varying electric fields // Mol. Phys. 2014. V. 112. № 14. P. 1870–1878. https://doi.org/10.1080/00268976.2013.867081
  36. He L., Dexter A.F., Middelberg A.P.J. Biomolecular engineering at interfaces // Chem. Eng. Sci. 2006. V. 61. № 3. P. 989–1003. https://doi.org/10.1016/j.ces.2005.05.064
  37. Lenci S., Tedeschi L., Pieri F., Domenici C. UV lithography-based protein patterning on silicon: Towards the integration of bioactive surfaces and CMOS electronics // A-ppl. Surf. Sci. 2011. V. 257. № 20. P. 8413–8419. https://doi.org/10.1016/j.apsusc.2011.04.096
  38. Kislov V.V. et al. Electronics of molecular nanoclusters // Int. J. Nanosci. 2004. V. 3. № 1–2. P. 137–147. https://doi.org/10.1142/S0219581X04001912
  39. Баранов М.А., Цыбин О.Ю., Величко Е.Н. Структурированные биомолекулярные пленки для микроэлектроники // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2021. Т. 14. № 1. С. 85–99. https://doi.org/10.18721/JPM.14106
  40. Gatto E., Toniolo C., Venanzi M. Peptide self-assembled nanostructures: From models to therapeutic peptides // Nanomaterials. 2022. V. 12(3). P. 456. https://doi.org/10.3390/nano12030466
  41. Baranov M., Velichko E., Tsybin O. Self-assembled biomolecular films as a new material for nano-telecommunication devices // in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020. V. 12526 LNCS. P. 384–393. https://doi.org/10.1007/978-3-030-65729-1_34
  42. Ravanfar R., Bayles C.J., Abbaspourrad A. Structural chemistry enables fluorescence of amino acids in the crystalline solid state // Cryst. Growth Des. 2020. V. 20(3). P. 1673–1680. https://doi.org/10.1021/acs.cgd.9b01430
  43. Deveaud B. The Physics of Semiconductor Microcavities: From Fundamentals to Nanoscale Devices. John Wiley and Sons, 2007.
  44. Toptygin I.N. Electromagnetic phenomena in matter: Statistical and quantum approaches. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015.
  45. Величко Е., Цыбин О. Биомолекулярный сенсор с микроэлектронным генератором электромагнитной волны. патент RU 2749698 С1, 2021.
  46. Dyubo D., Tsybin O.Y. Nano communication device with an embedded molecular film: Electromagnetic signals integration with dynamic operation photodetector // Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 2017. V. 10531 LNCS. P. 206–213. https://doi.org/10.1007/978-3-319-67380-6_19
  47. Karothu D.P., Dushaq G., Ahmed E., Catalano L., Polavaram S., Ferreira R., Li L., Mohamed S., Rasras M., Naumov P. Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared // Nat. Commun. 2021. V. 12(1). P. 1326. https://doi.org/10.1038/s41467-021-21324-y
  48. Dyubo D., Tsybin O.Y. Computer simulation of a surface charge nanobiosensor with internal signal integration // Biosensors. 2021. V. 11. № 10. https://doi.org/10.3390/bios11100397
  49. Miao L., Seminario J.M. Molecular dynamics simulations of signal transmission through a glycine peptide chain // J. Chem. Phys. 2007. V. 127. № 13. https://doi.org/10.1063/1.2786078
  50. Celestin M., Krishnan S., Bhansali S., Stefanakos E., Goswami D.Y. A review of self-assembled monolayers as potential terahertz frequency tunnel diodes // Nano. Res. 2014. V. 7. № 5. P. 589–625. https://doi.org/10.1007/S12274-014-0429-8
  51. Dyubo D., Tsybin O.Y., Baranov M.A., Alekseenko A.P., Velichko E.N. Study of electric properties of self-assembled films of albumin during their dehydration Recent citations Study of electric properties of self-assembled films of albumin during their dehydration // J. Phys. 2018. V. 1124. № 3. P. 31013. https://doi.org/10.1088/1742-6596/1124/3/031013
  52. Baranov M., Velichko E., Greshnevikov K. Analysis of Fractal Structures in Dehydrated Films of Protein Solutions // Symmetry (Basel). 2021. V. 13. № 123. P. 1–11. https://doi.org/10.3390/sym13010123
  53. Nepomnyashchaya E., Baranov M., Tsybin O. Measurement of Refraction Coefficients in thin Biomolecular Films Studies; Measurement of Refraction Coefficients in thin Biomolecular Films Studies. Int. Conf. Electr. Eng. Photonics, 2022. https://doi.org/10.1109/EEXPOLYTECH56308.2022.9950914

补充文件

附件文件
动作
1. JATS XML
2.

下载 (341KB)
3.

下载 (72KB)
4.

下载 (144KB)

版权所有 © М.А. Баранов, Э.К. Карсеева, О.Ю. Цыбин, 2023

##common.cookie##