Precise Tomography of Qudits

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Multilevel quantum states (qudits) represent a promising platform for scalable quantum comput-ing. In this paper, we present a method for precisely controlling such systems using fuzzy quantum measure-ments. The developed method is used for a precise reconstruction of quantum states under conditions of a significant effect of decoherence and quantum noise. Protocols for quantum measurements based on mutu-ally unbiased bases (MUBs) of various dimensions are considered. The accuracy characteristics of sets of ran-dom states uniformly distributed with respect to the Haar measure are studied.

About the authors

Yu. I. Bogdanov

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences

Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia

N. A. Bogdanova

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences

Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia

Yu. A. Kuznetsov

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences

Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia

K. B. Koksharov

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences

Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia

V. F. Lukichev

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences

Author for correspondence.
Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia

References

  1. Nielsen Michael A., Chuang Isaac L. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge: Cambridge University Press.
  2. Bogdanov Yu.I., Valiev K.A., Kokin A.A. Quantum computers: Achievements, implementation difficulties, and prospects // Russian Microelectronics, 2011. V. 40. № 4. PP. 225–236.
  3. Богданов Ю.И., Фастовец Д.В., Бантыш Б.И., Черняский А.Ю., Семенихин И.А., Богданова Н.А., Катамадзе К.Г., Кузнецов Ю.А., Кокин А.А., Лукичев В.Ф. Методы анализа качества элементной базы квантовых информационных технологий // Квантовая электроника. 48 (11), 1016–1022 (2018).
  4. Bogdanov Yu.I., Bantysh B.I., Chernyavskiy A.Yu., Lukichev V.F., and Orlikovsky A.A. Investigating the Effect of Amplitude and Phase Relaxation on the Quality of Quantum Information Technologies // Russian Microelectronics. 2015. V. 44. № 4. P. 225–230.
  5. Богданов Ю.И., Богданова Н.А., Фастовец Д.В., Лукичёв В.Ф. Решение уравнения Шредингера на квантовом компьютере методом Залки- Визнера с учетом квантовых шумов // Письма в ЖЭТФ. 2021. Т. 114. Выпуск 6. С. 391–399.
  6. Bogdanov Yu.I. Quantum measurements and high-precision control of quantum states // Proc. of SPIE. V. 12157. 121571V (2022).
  7. Banaszek K., Cramer M., Gross D. (ed.) 2012–2013 Focus on quantum tomography // New J. Phys. (focus issue) http://iopscience.iop.org/1367-2630/page/Focus%20on%20Quantum%20Tomography
  8. D’Ariano G.M., Paris M.G.A., Sacchi M.F. Quantum State Estimation // Lecture Notes in Physics / ed. Paris M., Řeháček J. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. V. 649. 519 p.
  9. Bogdanov Yu.I. Unified statistical method for reconstructing quantum states by purification, JETP 135, 6, 1068 (2009).
  10. Bogdanov Yu.I., Brida G., Genovese M., Kulik S.P., Moreva E.V., and Shurupov A.P. Statistical Estimation of the Efficiency of Quantum State Tomography Protocols // Phys. Rev. Lett. 2010. V. 105. 010404. 4 p.
  11. Bogdanov Yu.I., Brida G., Bukeev I.D., Genovese M., Kravtsov K.S., Kulik S.P., Moreva E.V., Soloviev A.A., Shurupov A.P. Statistical Estimation of Quantum Tomography Protocols Quality // Phys. Rev. A. 2011. V. 84. 042108. 19 p.
  12. Kiktenko E.O., Fedorov A.K., Strakhov A.A., Man’ko V.I. Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits // Phys. Lett. A. 379:22 (2015). 1409–1413
  13. Kiktenko E.O., Nikolaeva A.S., Peng Xu, Shlyapnikov G.V., Fedorov A.K. Scalable quantum computing with qudits on a graph // J. Phys. A. 101:2 (2020), 22304. 7 pp. arXiv: 1909.08973.
  14. Бантыш Б.И., Богданов Ю.И., Фастовец Д.В., Кузнецов Ю.А. Квантовая томография ионных кудитов // Наноиндустрия. 2020. Т. 13. № S5-3 (102). С. 790–793. https://doi.org/10.22184/1993-8578.2020.13.5s.790.793
  15. Bantysh B.I., Bogdanov Yu.I. Quantum tomography of noisy ion-based qudits // Laser Phys. Lett. 2021. 18 015203 (Published 18 December 2020).
  16. Bogdanov Yu.I. Quantum tomography of arbitrary spin states of particles: root approach // Proceedings of SPIE. 2006. V. 6264. 626403. 10 p.
  17. Bogdanov Yu.I., Belinsky L.V. Finite frames constructed by solving Fekete problem and accuracy of quantum tomography protocols based on them // Proceedings of SPIE V.9440, International Conference on Micro- and Nano-Electronics 2014. 94401L
  18. Богданов Ю.И., Белинский Л.В. Оптимизация протоколов томографии квантовых состояний на основе решения задачи Томсона // Труды ФТИАН. М. Наука. 2015. Т. 25. С. 90–98.
  19. Holevo A.S. [Quantum Systems, Channels, Information], De Gruyter Studies in Mathematical Physics 16 (2012).
  20. Bogdanov Y.I. et al. Qutrit State Engineering with Biphotons // Phys. Rev. Lett. 2004. V. 93. № 23. P. 230503.
  21. Bogdanov Y.I. et al. Statistical reconstruction of qutrits // Phys. Rev. A. 2004. V. 70. № 4. P. 042303.
  22. Bogdanov Y.I., Krivitsky L.A., Kulik S.P. Statistical reconstruction of the quantum states of three-level optical systems // JETP Lett. 2003. V. 78. P. 352.
  23. Bogdanov Y.I., Bukeev I.D., Gavrichenko A.K. Studying Adequacy, Completeness, and Accuracy of Quantum Measurement // Opt. Spectrooscopy. 2011. V. 111. № 4. P. 647–655.
  24. Planat M., Rosu H.C., Perrine S. A Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements // Foundations of Physics. 2006. V. 36. P. 1662—1680. eprint: quant-ph/0409081.
  25. Wootters W.K., Fields B.D. Optimal state-determination by mutually unbiased measurements // Annals of Physics. 1989. V. 191. № 2. P. 363–381.
  26. Bengtsson I. Three Ways to Look at Mutually Unbiased Bases // AIP Conference Proceedings. AIP, 2007. V. 889. P. 40–51.
  27. Durt T., Englert B.G., Bengtsson I., and Yczkowski K. On mutually unbiased bases // Int. J. Quantum Inf., V. 8. № 4 PP. 535–640. 2010.
  28. Klappenecker A., Rötteler M. Constructions of mutually unbiased bases // International Conference on Finite Fields and Applications. Springer, 2003. P. 137–144.
  29. Богданов Ю.И., Лукичев В.Ф., Нуянзин С.А., Орликовский А.А., Холево А.С., Чернявский А.Ю. Математическое моделирование влияния квантовых шумов на качество элементной базы квантовых компьютеров // Труды ФТИАН. М. Наука. 2012. Т. 22. С. 39–77.
  30. Bogdanov Yu.I., Kalinkin A.A., Kulik S.P., Moreva E.V., Shershulin V.A. Quantum polarization transformations in anisotropic dispersive medium // New Journal of Physics. 2013. V. 15. 035012. 24 p.
  31. Chuang I.L., Nielsen M.A. Prescription for experimental determination of the dynamics of a quantum black box // J. Mod. Opt. 44. 2455 (1997); arXiv: quant-ph/9610001.
  32. Mohseni M., Rezakhani A.T., Lidar D.A. Quantum-process tomography: Resource analysis of different strategies // Phys. Rev. A 77. 032322 (2008).
  33. Bogdanov Yu.I., Nuyanzin S.A. Accuracy features for quantum process tomography using superconductor phase qubits // Bulletin of the Russian Academy of Sciences. Physics, 2012. V. 76. № 2. PP. 139–142; arXiv: quant-ph/1106.2906.
  34. Bogdanov Yu.I., Chernyavskiy A.Yu., Holevo A.S., Lukichev V.F., Orlikovsky A.A. Mathematical models of quantum noise // Proc. SPIE 8700, 870019 (2013).
  35. Bogdanov Yu.I., Bantysh B.I., Kalinkin A.A., Kulik S.P., Moreva E.V., Shershulin V.A. Optical polarization echo: Manifestation and study by methods of quantum tomography of states and processes // JETP 118. 6. 845–855 (2014).
  36. Bogdanov Yu.I., Bantysh B.I., Bogdanova N.A., Kvasnyy A.B., Lukichev V.F. Quantum states tomography with noisy measurement channels // Proceedings of SPIE 10224, International Conference on Micro- and Nano-Electronics 2016, 102242O (December 30, 2016).
  37. Бантыш Б.И., Богданов Ю.И., Богданова Н.А., Кузнецов Ю.А. Прецизионная томография квантовых состояний в условиях нечетких квантовых измерений // Труды ФТИАН. М. Наука. 2020. Т. 29. С. 18–42.
  38. Zyczkowski K., Sommers H.-J. Induced measures in the space of mixed quantum states // J. Phys. A. Math. Gen. 2001. V. 34. № 35. P. 7111–7125.
  39. Hayden P., Leung D., Shor P.W., Winter A. Randomizing quantum states: Constructions and applications, Communications in Mathematical Physics, 250(2), 371–391. (2004).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (55KB)

Copyright (c) 2023 Ю.И. Богданов, Н.А. Богданова, Ю.А. Кузнецов, К.Б. Кокшаров, В.Ф. Лукичёв

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».