Tomography of Detectors Taking Dead Time into Account

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using numerical simulation methods that take into account the dead time effect, algorithms are developed to calculate the detector’s response for photon fluxes with different photon number distributions, including the Poisson, Fock, and thermal distributions. Based on the results obtained, a detector tomography method is developed, as well as an algorithm for identifying the corresponding elements of a positive opera-tor-valued measure (POVM). Experimental studies using coherent states demonstrate close agreement between the calculation results and experimental data.

About the authors

Yu. I. Bogdanov

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences

Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia

K. G. Katamadze

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences

Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia

N. A. Borshchevskaya

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences; Quantum Technology Center, Moscow State University

Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia; Moscow, 119991 Russia

G. V. Avosopiants

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences; Quantum Technology Center, Moscow State University

Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia; Quantum Technology Center, Moscow State University

N. A. Bogdanova

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences

Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia

S. P. Kulik

Quantum Technology Center, Moscow State University

Email: bogdanov_yurii@inbox.ru
Moscow, 119991 Russia

V. F. Lukichev

Valiev Institute of Physics and Technology Institute, Russian Academy of Sciences

Author for correspondence.
Email: bogdanov_yurii@inbox.ru
Moscow, 117218 Russia

References

  1. Hadfield R.H. Single-photon detectors for optical quantum information applications // Nat. Photonics. 2009. V. 3. № 12. P. 696–705.
  2. Shangguan M. et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector // Opt. Lett. 2017. V. 42. № 18. P. 3541.
  3. Morimoto K. et al. Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications // Optica. 2020. V. 7. № 4. P. 346.
  4. Yamazaki I. et al. Microchannel-plate photomultiplier applicability to the time-correlated photon-counting method // Rev. Sci. Instrum. 1985. V. 56. № 6. P. 1187–1194.
  5. Cova S., Longoni A., Andreoni A. Towards picosecond resolution with single-photon avalanche diodes // Rev. Sci. Instrum. 1981. V. 52. № 3. P. 408–412.
  6. Goltsman G.N. et al. Picosecond superconducting single-photon optical detector // Appl. Phys. Lett. 2001. V. 79. № 6. P. 705–707.
  7. Luis A., Sánchez-Soto L.L. Complete Characterization of Arbitrary Quantum Measurement Processes // Phys. Rev. Lett. 1999. V. 83. № 18. P. 3573–3576.
  8. Lundeen J.S. et al. Tomography of quantum detectors // Nat. Phys. Nature Publishing Group. 2009. V. 5. № 1. P. 27–30.
  9. Богданов Ю.И.И., Кривицкий Л.А., Кулик С.П. Статистическое восстановление квантовых состояний оптических трехуровневых систем // Письма в ЖЭТФ. 2003. V. 78. № 6. P. 804–809.
  10. Bogdanov Y.I. et al. Polarization states of four-dimensional systems based on biphotons // Phys. Rev. A. 2006. V. 73. № 6. P. 063810.
  11. Богданов Ю.И. и др. Статистическое восстановление оптических квантовых состояний на основе взаимно дополнительных квадратурных квантовых измерений // ЖЭТФ. 2016. Т. 150. № 2. С. 246–253.
  12. Bogdanov Y.I. et al. Multiphoton subtracted thermal states: Description, preparation, and reconstruction // Phys. Rev. A. 2017. V. 96. № 6. P. 063803.
  13. Bogdanov Y.I. et al. Optical polarization echo: Manifestation and study by methods of quantum tomography of states and processes // J. Exp. Theor. Phys. 2014. V. 118. № 6. P. 845–855.
  14. Bogdanov Y.I. et al. Quantum polarization transformations in anisotropic dispersive media // New J. Phys. 2013. V. 15. № 3. P. 035012.
  15. Dong D., Petersen I.R. Quantum estimation, control and learning: Opportunities and challenges // Annu. Rev. Control. 2022. V. 54. P. 243–251.
  16. Renema J.J. et al. Modified detector tomography technique applied to a superconducting multiphoton nanodetector // Opt. Express. 2012. V. 20. № 3. P. 2806.
  17. Feito A. et al. Measuring measurement: theory and practice // New J. Phys. 2009. V. 11. № 9. P. 093038.
  18. Natarajan C.M. et al. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths // Opt. Express. 2013. V. 21. № 1. P. 893.
  19. Fiurášek J. Maximum-likelihood estimation of quantum measurement // Phys. Rev. A. 2001. V. 64. № 2. P. 024102.
  20. Grandi S. et al. Experimental quantum tomography of a homodyne detector // New J. Phys. 2017. V. 19. № 5. P. 053015.
  21. Zhang L. et al. Recursive quantum detector tomography // New J. Phys. 2012. V. 14. № 11. P. 115005.
  22. Wang Y. et al. Two-Stage Estimation for Quantum Detector Tomography: Error Analysis, Numerical and Experimental Results // IEEE Trans. Inf. Theory. 2021. V. 67. № 4. P. 2293–2307.
  23. Yang T.H. et al. Robust and Versatile Black-Box Certification of Quantum Devices // Phys. Rev. Lett. 2014. V. 113. № 4. P. 040401.
  24. Mogilevtsev D., Řeháček J., Hradil Z. Relative tomography of an unknown quantum state // Phys. Rev. A. 2009. V. 79. № 2. P. 020101.
  25. Migdall A. et al. Single-photon generation and detection. 1st ed. Elsevier, 2013. 593 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (112KB)
3.

Download (53KB)
4.

Download (150KB)
5.

Download (246KB)
6.

Download (123KB)

Copyright (c) 2023 Ю.И. Богданов, К.Г. Катамадзе, Н.А. Борщевская, Г.В. Авосопянц, Н.А. Богданова, С.П. Кулик, В.Ф. Лукичев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies