Thermal Contact Resistance at Cryogenic Temperatures in the Presence of Strong Magnetic Fields

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A physical model of a mechanical thermal switch at cryogenic temperatures is studied. In the model, heat is transferred due to contact heat conduction in a detachable contact pair of two copper cylinders. A mechanical thermal switch is developed using a cryomagnetic system with a 10-T superconducting solenoid, and the values of thermal contact conductance are determined in a temperature interval of 10–160 K, including values at a magnetic field of 5 T. In an experimental temperature interval of 60–80 K, close to the phase transition of the DyAl2 and GdNi2 compounds, the thermal contact conductance is 2300–3300 W/(m2 K). The effect of magnetic field of up to 5 T on thermal contact resistance is experimentally determined under vacuum conditions

About the authors

K. A. Kolesov

Kotelnikov Institute of Radioengineering and Eletcronics, Russian Academy of Sciences

Email: kolesovkka@mail.ru
Moscow, 125009 Russia

A. V. Mashirov

Kotelnikov Institute of Radioengineering and Eletcronics, Russian Academy of Sciences

Email: kolesovkka@mail.ru
Moscow, 125009 Russia

A. S. Kuznetsov

Kotelnikov Institute of Radioengineering and Eletcronics, Russian Academy of Sciences

Email: kolesovkka@mail.ru
Moscow, 125009 Russia

V. V. Koledov

Kotelnikov Institute of Radioengineering and Eletcronics, Russian Academy of Sciences

Email: kolesovkka@mail.ru
Moscow, 125009 Russia

A. O. Petrov

Kotelnikov Institute of Radioengineering and Eletcronics, Russian Academy of Sciences

Email: kolesovkka@mail.ru
Moscow, 125009 Russia

V. G. Shavrov

Kotelnikov Institute of Radioengineering and Eletcronics, Russian Academy of Sciences

Author for correspondence.
Email: kolesovkka@mail.ru
Moscow, 125009 Russia

References

  1. Klinar K., Swoboda T., Munoz M., Kitanovski A. // Adv. Electronic Mater. 2021. V. 7. № 3. Article No. 2000623. https://doi.org/10.1002/aelm.202000623
  2. Lambert M.A., Fletcher L.S. // J. Thermophysics Heat Transfer. 1997. V. 11. № 2. P. 129. https://doi.org/10.2514/2.6221
  3. Xian Y., Zhang P., Zhai et al. // Appl. Therm. Engineering. 2018. V. 130. P. 1530. https://doi.org/10.1016/j.applthermaleng.2017.10.163
  4. Clausing A.M., Chao B.T. // J. Heat Transfer. 1965. V. 87. № 2. P. 243. https://doi.org/10.1115/1.3689082
  5. Bahrami M., Culham J.R., Yananovich M.M., Schneider G.E. // Appl. Mechanics Rev. 2006. V. 59. № 1. P. 1. https://doi.org/10.1115/1.2110231
  6. Tariq A., Asif M. // Heat Mass Transfer. 2016. V. 52. № 2. P. 291. https://doi.org/10.1007/s00231-015-1551-1
  7. Drobizhev A., Reiten J., Singh V., Kolomensky Y.G. // Cryogenics. 2017. V. 85. P. 63. https://doi.org/10.1016/j.cryogenics.2017.05.008
  8. Попов В.М. Теплообмен в зоне контакта разъемных и неразъемных соединений. М.: Энергия, 1971.
  9. Gmelin E., Asen-Palmer M., Reuther M., Villar R. // J. Phys. D: Appl. Phys. 1999. V. 32. № 6. R19. https://doi.org/10.1088/0022-3727/32/6/004
  10. Koshkid’ko Yu.S., Dilmieva E.T. et al. // J. Alloys Compounds. 2022. V. 904. Article No. 164051. https://doi.org/10.1016/j.jallcom.2022.164051
  11. Кошкидько Ю.С., Дильмиева Э.Т., Каманцев А.П. и др. // РЭ. 2023. Т. 68. № 4. С.
  12. Fukuoka T., Nomura M. // J. Pressure Vessel Technol. 2013. V. 135. № 2. P. 021403. https://doi.org/10.1115/1.4007958
  13. Berman R., MacDonald D. // Proc. Royal Soc. A: Math., Phys., Engineering Sci. 1952. V. 211. № 1104. P. 122. https://doi.org/10.1098/rspa.1952.0029

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (64KB)
3.

Download (617KB)
4.

Download (610KB)
5.

Download (761KB)
6.

Download (43KB)
7.

Download (66KB)

Copyright (c) 2023 К.А. Колесов, А.В. Маширов, А.С. Кузнецов, В.В. Коледов, А.О. Петров, В.Г. Шавров

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies