Thermal Contact Resistance at Cryogenic Temperatures in the Presence of Strong Magnetic Fields

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A physical model of a mechanical thermal switch at cryogenic temperatures is studied. In the model, heat is transferred due to contact heat conduction in a detachable contact pair of two copper cylinders. A mechanical thermal switch is developed using a cryomagnetic system with a 10-T superconducting solenoid, and the values of thermal contact conductance are determined in a temperature interval of 10–160 K, including values at a magnetic field of 5 T. In an experimental temperature interval of 60–80 K, close to the phase transition of the DyAl2 and GdNi2 compounds, the thermal contact conductance is 2300–3300 W/(m2 K). The effect of magnetic field of up to 5 T on thermal contact resistance is experimentally determined under vacuum conditions

作者简介

K. Kolesov

Kotelnikov Institute of Radioengineering and Eletcronics, Russian Academy of Sciences

Email: kolesovkka@mail.ru
Moscow, 125009 Russia

A. Mashirov

Kotelnikov Institute of Radioengineering and Eletcronics, Russian Academy of Sciences

Email: kolesovkka@mail.ru
Moscow, 125009 Russia

A. Kuznetsov

Kotelnikov Institute of Radioengineering and Eletcronics, Russian Academy of Sciences

Email: kolesovkka@mail.ru
Moscow, 125009 Russia

V. Koledov

Kotelnikov Institute of Radioengineering and Eletcronics, Russian Academy of Sciences

Email: kolesovkka@mail.ru
Moscow, 125009 Russia

A. Petrov

Kotelnikov Institute of Radioengineering and Eletcronics, Russian Academy of Sciences

Email: kolesovkka@mail.ru
Moscow, 125009 Russia

V. Shavrov

Kotelnikov Institute of Radioengineering and Eletcronics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kolesovkka@mail.ru
Moscow, 125009 Russia

参考

  1. Klinar K., Swoboda T., Munoz M., Kitanovski A. // Adv. Electronic Mater. 2021. V. 7. № 3. Article No. 2000623. https://doi.org/10.1002/aelm.202000623
  2. Lambert M.A., Fletcher L.S. // J. Thermophysics Heat Transfer. 1997. V. 11. № 2. P. 129. https://doi.org/10.2514/2.6221
  3. Xian Y., Zhang P., Zhai et al. // Appl. Therm. Engineering. 2018. V. 130. P. 1530. https://doi.org/10.1016/j.applthermaleng.2017.10.163
  4. Clausing A.M., Chao B.T. // J. Heat Transfer. 1965. V. 87. № 2. P. 243. https://doi.org/10.1115/1.3689082
  5. Bahrami M., Culham J.R., Yananovich M.M., Schneider G.E. // Appl. Mechanics Rev. 2006. V. 59. № 1. P. 1. https://doi.org/10.1115/1.2110231
  6. Tariq A., Asif M. // Heat Mass Transfer. 2016. V. 52. № 2. P. 291. https://doi.org/10.1007/s00231-015-1551-1
  7. Drobizhev A., Reiten J., Singh V., Kolomensky Y.G. // Cryogenics. 2017. V. 85. P. 63. https://doi.org/10.1016/j.cryogenics.2017.05.008
  8. Попов В.М. Теплообмен в зоне контакта разъемных и неразъемных соединений. М.: Энергия, 1971.
  9. Gmelin E., Asen-Palmer M., Reuther M., Villar R. // J. Phys. D: Appl. Phys. 1999. V. 32. № 6. R19. https://doi.org/10.1088/0022-3727/32/6/004
  10. Koshkid’ko Yu.S., Dilmieva E.T. et al. // J. Alloys Compounds. 2022. V. 904. Article No. 164051. https://doi.org/10.1016/j.jallcom.2022.164051
  11. Кошкидько Ю.С., Дильмиева Э.Т., Каманцев А.П. и др. // РЭ. 2023. Т. 68. № 4. С.
  12. Fukuoka T., Nomura M. // J. Pressure Vessel Technol. 2013. V. 135. № 2. P. 021403. https://doi.org/10.1115/1.4007958
  13. Berman R., MacDonald D. // Proc. Royal Soc. A: Math., Phys., Engineering Sci. 1952. V. 211. № 1104. P. 122. https://doi.org/10.1098/rspa.1952.0029

补充文件

附件文件
动作
1. JATS XML
2.

下载 (64KB)
3.

下载 (617KB)
4.

下载 (610KB)
5.

下载 (761KB)
6.

下载 (43KB)
7.

下载 (66KB)

版权所有 © К.А. Колесов, А.В. Маширов, А.С. Кузнецов, В.В. Коледов, А.О. Петров, В.Г. Шавров, 2023

##common.cookie##