开放存取 开放存取  受限制的访问 ##reader.subscriptionAccessGranted##  受限制的访问 订阅存取

卷 64, 编号 1 (2024)

封面

完整期次

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

Articles

pages 3-4 views

Добавки к катализатору крекинга для снижения содержания токсичных компонентов в дымовых газах (обзор)

Потапенко О., Бобкова Т., Дмитриев К., Кобзарь Е., Доронин В., Сорокина Т., Юртаева А., Ковеза В.

摘要

В статье представлен обзор данных о применяемых подходах для снижения выбросов CO, SOx и NOx в газах регенерации катализатора крекинга, таких как некаталитические и каталитические методы, в том числе и результаты разработок добавок, выполняемых в ЦНХТ ИК СО РАН. Проведен сравнительный анализ различных каталитических систем в данной области. Определены перспективные направления для разработки эффективных добавок к катализатору крекинга для снижения содержания токсичных компонентов в дымовых газах.

Neftehimiâ. 2024;64(1):5-18
pages 5-18 views

Регенерация и реактивация катализаторов гидроочистки (обзор)

Уваркина Д., Будуква С., Климов О.

摘要

В обзоре представлены данные, обобщающие основные направления по работе с дезактивированными катализаторами. Рассмотрено современное состояние технологий по регенерации и реактивации катализаторов гидроочистки. Кратко изложены промышленные технологии проведения окислительной регенерации катализаторов гидроочистки дизельных фракций. Освещены требования, предъявляемые к регенерированным катализаторам для проведения реактивации. Продемонстрированы реакции, протекающие в ходе регенерации и реактивации, а также условия, способствующие необратимой дезактивации.

Neftehimiâ. 2024;64(1):19-41
pages 19-41 views

Методология получения и анализа углеводородов алмазоподобного строения (от адамантанов до тетрамантанов) состава С10–С23 в нефтях

Гордадзе Г., Гируц М., Гаджиев Г.

摘要

В работе представлена методология получения и анализа углеводородов алмазоподобного строения (от адамантанов до тетрамантанов) состава С10–С23 из нефтей. Анализ включает в себя получение парафино-циклопарафиновой фракции из нефтей, концентрирование полициклических насыщенных углеводородов методом термодиффузионного разделения, каталитическую изомеризацию концентратов и последующий анализ как исходных фракций – протоадамантаноидов, так и продуктов изомеризации – адамантаноидов методом хромато-масс-спектрометрии. На примере нефтей различных месторождений продемонстрированы возможности предлагаемой методологии.

Neftehimiâ. 2024;64(1):42-54
pages 42-54 views

Окисление пироконденсата и некоторых его непредельных компонентов пероксидом водорода в присутствии полиоксовольфрамата, модифицированного катионами церия

Алимарданов Х., Гарибов Н., Мусаева Э., Дадашова Н.

摘要

Приведены результаты жидкофазного каталитического окисления фракции пироконденсата, выкипающего при 130–190℃, полученного от этиленовых установок различной мощности пероксидом водорода. В качестве катализатора использованы РЗЭ (церий, лантан) содержащие полиоксовольфраматы, нанесенные на микроструктуированный углеродный материал. Показана возможность использования полученного оксигената как противодымной присадки в составе дизельного топлива. С целью изучения и идентификации состава оксигената рассматриваются результаты окисления индивидуальных непредельных углеводородов, входящих в состав данной фракции (стирола, α-метилстирола, 4-метилстирола, дициклопентадиена) в условиях, принятых за стандартные (температура 70–80℃, продолжительность 7 ч, мольное соотношение субстрат : H2O2 = 1 : (1–2)). По данным ГХ, ГХ-МС, ИК-спектроскопии и иодометрического анализов, конверсия непредельных углеводородов при окислении фракции достигает 95–99%. Установлено, что основными продуктами реакции окисления стирола и его метилпроизводных являются соответствующие эпоксиды, диолы и альдегиды; при окислении дициклопентадиена образуются моно- и диэпоксиды, полиолы и продукты окислительной олигомеризации. Оксигенатная фракция испытана в качестве противодымной присадки к дизельному топливу. Добавление ее в количестве 0.25–0.5 мас. % согласно ГОСТ 21393-75 способствует снижению расхода топлива на 1.5–1.7 мас. %, а задымления – 10–15 мас. % относительно исходной базы. Углеводородная фракция, выкипающая при 80–170°С, выделенная после перегонки при атмосферном давлении, состоит преимущественно из ароматических углеводородов С7–С10. Приведены сравнительные характеристики полученного оксигената с присадками «Цетан-плюс SMT-2» и «Цетан-корректор BBF».

Neftehimiâ. 2024;64(1):55-63
pages 55-63 views

Катализаторы гидроизомеризации н-алканов на основе цеолита HZSM-23 и сульфидов NiMo

Богомолова Т., Смирнова М., Климов О., Носков А.

摘要

Гидроизомеризация длинноцепочечных н-алканов – наиболее эффективный способ улучшения низкотемпературных свойств дизельных топлив. Традиционными являются нанесенные платиновые катализаторы, содержащие одномерные цеолиты в качестве кислотного компонента. В данной работе в качестве гидродегидрирующего компонента бифункциональных катализаторов гидроизомеризации н-декана использовали NiMo-сульфиды. Показаны тенденции изменения активности и селективности NiMo/HZSM-23/Al2O3 в зависимости от концентрации Ni и Mo, их соотношения, а также предшественника молибдена и доли цеолита в носителе. Установлено, что наиболее высокие показатели активности и селективности наблюдаются для образцов, имеющих соотношение Ni/Mo в пределах 0.4–0.7 и содержащих не менее 12 мас. % Mo. Использование оксида молибдена вместо парамолибдата аммония способствует увеличению активности и сопровождается незначительным снижением селективности. При исследовании катализаторов, содержащих разную долю цеолита, установлено, что активность может быть увеличена повышением концентрации бренстедовских кислотных центров в носителе без заметного изменения селективности.

Neftehimiâ. 2024;64(1):64-72
pages 64-72 views

Особенности синтеза сложных эфиров пентаэритрита в различных растворителях

Иванова Ю., Емельянов В., Красных Е., Фетисов Д., Леванова С., Шакун В.

摘要

На примере модельной реакции этерификации масляной кислоты пентаэритритом проведены комплексные исследования и рассмотрены варианты оптимизации процесса с целью снижения времени синтеза сложных эфиров пентаэритрита, уменьшения побочных реакций и смолообразования; аргументированы возможные способы выделения растворителя из реакционной массы. Установлено, что применение сульфолана или бифенила в качестве растворителя при катализе сульфокислотами (метан- или толуол-сульфокислота) позволяет сократить время контакта для достижения 50% конверсии по пентаэритриту до 2–8 мин при равных условиях по сравнению с режимом самокатализа (27–578 мин); при этом цветность реакционной массы, определенная по платино-кобальтовой шкале Хазена в соответствии со стандартом ИСО 2211-73, составляет 20–52 единиц против >9800 единиц Хазена в режиме самокатализа.

Neftehimiâ. 2024;64(1):73-79
pages 73-79 views

Получение метилциклопентана в процессе дегидрирования н-гексана на пористых керамических платино-оловянных конвертерах

Федотов А., Грачёв Д., Цодиков М.

摘要

Проведены предварительные опыты по определению потенциальной возможности и первичной оценке эффективности применения каталитических платино-оловянных конвертеров для прямого превращения н-гексана в метилциклопентан. Обнаружено, что на синтезированном нами конвертере при температуре 450°С и объемной скорости подачи н-гексана ~32 ч–1 конверсия сырья составляет ~34%, выход метилциклопентана относительно жидких продуктов ~6% (общий выход с учетом коксообразова- ния ~4%), а селективность по метилциклопентану относительно жидких продуктов ~87% (общая селективность с учетом коксообразования ~13%). Количество побочного бензола составляло менее 1%. Степень зауглероживания конвертера за время эксперимента не превышала 2.5% на исходный вес катализатора.

Neftehimiâ. 2024;64(1):80-85
pages 80-85 views

Зависимость селективности гидрирования фурфурола в присутствии рутениевых катализаторов от типа их носителя и параметров реакции

Бороноев М., Шакиров И., Ролдугина Е., Кардашева Ю., Верченко В., Кардашев С.

摘要

Синтезированы катализаторы на основе наночастиц Ru, нанесенных на следующие носители: наносферический мезопористый фенолформальдегидный полимер; мезопористый цирконосиликат; композитный материал на основе мезопористых углеродных наносфер и цирконосиликата. Катализаторы испытаны в гидрировании фурфурола в воде при температурах 100–250°С и давлении водорода 1–5 МПа. Установлено влияние загрузки катализатора и времени реакции на конверсию и селективность процесса. Показано, что катализатор на основе композитного материала обладает более высокой активностью и селективностью в воднофазном гидрировании фурфурола.

Neftehimiâ. 2024;64(1):86-96
pages 86-96 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».