Aim. The aim of the study was to show in animal experiment the integration of the bone tissue into the titanium cellular structure, inserted into artificially made bone defects, and to analyze the results of morphological investigations. Materials and methods. Together with the staff of the Chair of Machine Engineering and Resistance of Materials (Head - Doctor of Technical Science, professor A.M. Khanov) of Perm State National Technical University, we modeled implants with cellular structure using three-dimensional systems and produced them according to stereolithographic technology (Stereolithography-SLA); three types of them were developed, taking into account the sizes of cells, type of construction, type, degree and localization of bone defects. The experiments were conducted on outbred white rats aged 3 months, with the body mass of 180 g. These implants were inserted into the region of animals’ tail base. The operation was performed under the local anesthesia with ledocain (0,5 %, 1,0 ml) and the study lasted for 3 months. The implants with the size of cells equal to 250 mcm, 550 mcm and 850 mcm were implanted to rats. The results of bone defect plasty applying titanium cellular implants with different sizes of cells, 250 mcm, 550 mcm and 850 mcm, were estimated; the data of morphological studies, given in comparison with “Uglecon-M”, are presented. Results. Implants with cellular structure were produced by stereolithographic technology (Stereolithography-SLA) and inserted into the bone structure of animals. The experiment showed a total penetration of the surrounding tissues into the cellular structure of implants. The best results were achieved by means of titanium implants with the size of cells equal to 850 mcm versus porous “Uglecon-M”. Conclusions. It was found that the tissue is surrounding all the three types of implants, forms the capsule, penetrates into the cells, but fills it depending on the size.