DIFFERENCES IN PHYLOGENETIC FACTORS OF ETIOLOGY AND PATHOGENESIS UNITY OF METABOLIC PANDEMIAS - CIVILIZATION DISEASES


Cite item

Full Text

Abstract

Regulation of metabolism in vivo can be understood when considering the formation in phylogenesis of the function of humoral, hormonal mediators, vegetative regulators separately: a) at the cell level; b) in paracrinally regulated cell communities (PC), organs and systems and c) at the body level. Each of regulation levels was formed at different stages of phylogenesis; the completion of levels occurred, we suppose, when reaching “relative biological perfection”. Formation of organs and organ systems was finished also, in our opinion, at the level of this perfection. When three levels reached sequentially were analyzed in Homo sapiens , it was revealed with systemic approach that through “relative biological perfection” at the level of the body, “regular mismatch” of metabolism is observed. Phylogenetic mismatch of the regulation of metabolism at three levels of “relative biological perfection” are etiological factors of “metabolic pandemias” of each of “civilization diseases”. All “metabolic pandemias” including atherosclerosis, metabolic arterial hypertension, IR status, obesity, metabolic syndrome and nonalcoholic fatty liver disease are disorders of one, late in phylogenesis, biological function of locomotion. Etiological basis for metabolic (essential) arterial hypertension is a regular mismatch: a local compensation of disturbances of the biological response metabolism ↔ microcirculation in the distal arterial bed with endothelium-dependent vasodilatation and only systemic compensation at the level of the body in the proximal part. For millions of years, there coexist two functionally connected and phylogenetically separated pools of fatty cells: the earlier visceral fatty cells (VFC) and the later subcutaneous adipocytes. Insulin blocks TG hydrolysis and release of nonetherified fatty acids (NEFA) into the blood plasma only from adipocytes; hormone cannot block lipolysis in phylogenetically early VFC and inhibit the effect of phylogenetically early hormones on them. Increase in blood plasma NEFA in the course of biological response of stress in vivo does not accompany proportional growth in albumin concentration. The function of phylogenetically early resident macrophages and monocytes ↔ macrophages, differentiated in intima of arteries in situ and ex tempore , is not identical. Biological response of fatty cells deposit into adipocytes occurs in the form of nonpolar triglycerides in lipoprotein composition, but their release - only in the form of polar NEFA.

About the authors

V N Titov

Российский кардиологический научно-производственный комплекс

Email: vn_titov@mail.ru
доктор медицинских наук, профессор, руководитель лаборатории клинической биохимии липидов и липопротеинов

References

  1. Булатова И. А., Щекотов В. В., Щекотова А. П. Функциональное состояние эндотелия при гепатитах и циррозах печени. Lambert Academic Publishins GMbH Saarbrucke 2011; 118.
  2. Зоров Д. Б., Плотников Е. Ю., Силачев Д. Н., Зорова Л. Д., Певзнер И. Б., Зоров С. Д., Бабенко В. А., Янкаускас С. С., Попков В. А., Савина П. С. Микробиота и митобиота. Поставив знак равенства между митохондрией и бактерией. Биохимия 2014; 79 (10): 1252-1268.
  3. Постнов Ю. В., Орлов С. Н. Первичная гипертензия как патология клеточных мембран. М. Медицина 1987; 177.
  4. Титов В. Н. Биологические функции (экзотрофия, гомеостаз, эндоэкология), биологические реакции (экскреция, воспаление, трансцитоз) и патогенез артериальной гипертонии. М.-Тверь: Триада 2009; 440.
  5. Титов В. Н. Инверсия представлений о биологической роли системы ренин → ангиотензин II → альдостерон и функции артериального давления как регулятора метаболизма. Клиническая лабораторная диагностика 2015; 2: 4-13.
  6. Титов В. Н. Клиническая биохимия жирных кислот, липидов и липопротеинов. М.-Тверь: Триада 2008; 272.
  7. Титов В. Н. Липотоксичность избытка жирных кислот в клетках: эндоплазматический стресс, афизиологичный фолдинг протеинов, белки-шапероны, биологическая реакция воспаления и апоптоз. Кардиологический вестник 2014; 3: 96-104.
  8. Титов В. Н. Первичный и вторичный атеросклероз, атероматоз и атеротромбоз. М.-Тверь: Триада 2008; 344.
  9. Титов В. Н. Становление в филогенезе биологической функции питания. Функциональное различие висцеральных жировых клеток и подкожных адипоцитов. Вопросы питания 2015; 84 (1): 15-24.
  10. Титов В. Н. Филогенетическая теория общей патологии. Патогенез болезней цивилизации. Атеросклероз. М.: ИНФРА-М 2014; 335.
  11. Титов В. Н. Филогенетическая теория общей патологии. Патогенез метаболических пандемий. Сахарный диабет. М.: ИНФРА-М 2014; 222.
  12. Титов В. Н. Филогенетическая теория общей патологии. Патогенез метаболических пандемий. Артериальная гипертония. М.: ИНФРА-М 2014; 204.
  13. Титов В. Н., Востров И. А., Ширяева Ю. К., Кааба С. И. Становление в филогенезе липопротеинов низкой, очень низкой плотности и инсулина. Липотоксичность жирных кислот и липидов. Позиционные изомеры триглицеридов. Успехи современной биологии 2012; 132 (5): 506-526.
  14. Титов В. Н., Лисицын Д. М. Жирные кислоты. Физическая химия, биология и медицина. М.-Тверь: Триада 2006; 672.
  15. Титов В. Н., Ощепкова Е. В., Дмитриев В. А. С-реактивный белок, микроальбуминурия. Эндогенное воспаление и артериальная гипертония. М.: Изд-во РГГУ 2009; 376.
  16. Шноль С. Э. Физико-химические факторы биологической эволюции. М.: Наука 1979; 270.
  17. Botham K. M., Wheeler-Jones C. P. Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog. Lipid. Res. 2013; 52 (4): 446-464.
  18. Crowley S. D., Coffman T. M. The inextricable role of the kidney in hypertension. J. Clin. Invest. 2014; 124 (6): 2341 - 2347.
  19. Dubland J. A., Francis G. A. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. Front. Cell. Dev. Biol. 2015; 3: 3-10.
  20. Erbel C., Wolf A., Lasitschka F., Linden F., Domschke G., Akhavanpoor M., Doesch A. O., Katus H. A., Gleissner C. A. Prevalence of M4 macrophages within human coronary atherosclerotic plaques is associated with features of plaque instability. Int. J. Cardiol. 2015; 186: 219-225.
  21. Gremmels H., Bevers L. M., Fledderus J. O., Braam B., van Zonneveld A. J., Verhaar M. C., Joles J. A. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells. Eur. J. Pharmacol. 2015; 751: 67 - 72.
  22. Gupta-Malhotra M., Banker A., Shete S., Hashmi S. S., Tyson J. E., Barratt M. S., Hecht J. T., Milewicz D. M., Boerwinkle E. Essential hypertension vs. secondary hypertension among children. Am. J. Hypertens 2015; 28 (1): 73-80.
  23. Hoeks J., Schrauwen P. Muscle mitochondria and insulin resistance: a human perspective. Trends Endocrinol. Metab. 2012; 23 (9): 444-450.
  24. Ilhan F., Kalkanli S.T. Atherosclerosis and the role of immune cells. World J. Clin. Cases 2015; 3 (4): 345 - 352.
  25. Johnson R. J., Lanaspa M. A., Gabriela Sánchez-Lozada L., Rodriguez-Iturbe B. The discovery of hypertension: evolving views on the role of the kidneys, and current hot topics. Am. J. Physiol. Renal. Physiol. 2015; 308 (3): F167-F178.
  26. Lowren F., Teoh H, Verma S. Obesity and atherosclerosis: mechanistic insights. Can. J. Cardiol. 2015; 31 (2): 177-183.
  27. Papackova Z., Palenickova E., Dankova H., Zdychova J., Skop V., Kazdova L., Cahova M. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages. Nutr. Metab. 2012; 9: 22-37.
  28. Riccioni G., Sblendorio V. Atherosclerosis: from biology to pharamacological treatment. J. Geriatric. Cardiol. 2012; 9: 305-317.
  29. Schiffrin E. L. Immune mechanisms in hypertension and vascular injury. Кlin. Sci. 2014; 126 (4): 267-274.
  30. Szatryd C., Kimmel A. R. Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie 2014; 96: 96-101.
  31. Tenenbaum A., Klempfner R., Fisman E. Z. Hypertriglyceridemia: a too long unfairly neglected major cardiovascular risk factor. Cardiovasc. Diabetol. 2014; 13: 159-164.
  32. Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr. Pharm. Des. 2014; 20 (35): 5507-5509.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Titov V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».