Analysis of the efficiency of classification of hyperspectral satellite images of natural and man-made areas
- 作者: Borzov S.M.1, Potaturkin A.O.1, Potaturkin O.I.1,2, Fedotov A.M.2,3
- 
							隶属关系: 
							- Institute of Automation and Electrometry, Siberian Branch
- Novosibirsk State University
- Institute of Computational Technologies, Siberian Branch
 
- 期: 卷 52, 编号 1 (2016)
- 页面: 1-10
- 栏目: Analysis and Synthesis of Signals and Images
- URL: https://journals.rcsi.science/8756-6990/article/view/211905
- DOI: https://doi.org/10.3103/S8756699016010015
- ID: 211905
如何引用文章
详细
The efficiency of a number of the classical methods of supervised classification of hyperspectral data is estimated by an example of discriminating the types of the underlying surface in natural and man-made areas. The minimum distance, support vector machine, Mahalanobis, and maximum likelihood methods are considered. Particular attention is paid to studying the dependence of the data classification accuracy on the number of spectral features and the way of choosing them in the above-mentioned methods. Experimental results obtained by processing real hyperspectral images of landscapes of various types are reported.
作者简介
S. Borzov
Institute of Automation and Electrometry, Siberian Branch
							编辑信件的主要联系方式.
							Email: borzov@iae.nsk.su
				                					                																			                												                	俄罗斯联邦, 							pr. Akademika Koptyuga 1, Novosibirsk, 630090						
A. Potaturkin
Institute of Automation and Electrometry, Siberian Branch
														Email: borzov@iae.nsk.su
				                					                																			                												                	俄罗斯联邦, 							pr. Akademika Koptyuga 1, Novosibirsk, 630090						
O. Potaturkin
Institute of Automation and Electrometry, Siberian Branch; Novosibirsk State University
														Email: borzov@iae.nsk.su
				                					                																			                												                	俄罗斯联邦, 							pr. Akademika Koptyuga 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090						
A. Fedotov
Novosibirsk State University; Institute of Computational Technologies, Siberian Branch
														Email: borzov@iae.nsk.su
				                					                																			                												                	俄罗斯联邦, 							ul. Pirogova 2, Novosibirsk, 630090; pr. Akademika Lavrent’eva 6, Novosibirsk, 630090						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					