Analysis of the efficiency of classification of hyperspectral satellite images of natural and man-made areas
- Autores: Borzov S.M.1, Potaturkin A.O.1, Potaturkin O.I.1,2, Fedotov A.M.2,3
-
Afiliações:
- Institute of Automation and Electrometry, Siberian Branch
- Novosibirsk State University
- Institute of Computational Technologies, Siberian Branch
- Edição: Volume 52, Nº 1 (2016)
- Páginas: 1-10
- Seção: Analysis and Synthesis of Signals and Images
- URL: https://journals.rcsi.science/8756-6990/article/view/211905
- DOI: https://doi.org/10.3103/S8756699016010015
- ID: 211905
Citar
Resumo
The efficiency of a number of the classical methods of supervised classification of hyperspectral data is estimated by an example of discriminating the types of the underlying surface in natural and man-made areas. The minimum distance, support vector machine, Mahalanobis, and maximum likelihood methods are considered. Particular attention is paid to studying the dependence of the data classification accuracy on the number of spectral features and the way of choosing them in the above-mentioned methods. Experimental results obtained by processing real hyperspectral images of landscapes of various types are reported.
Palavras-chave
Sobre autores
S. Borzov
Institute of Automation and Electrometry, Siberian Branch
Autor responsável pela correspondência
Email: borzov@iae.nsk.su
Rússia, pr. Akademika Koptyuga 1, Novosibirsk, 630090
A. Potaturkin
Institute of Automation and Electrometry, Siberian Branch
Email: borzov@iae.nsk.su
Rússia, pr. Akademika Koptyuga 1, Novosibirsk, 630090
O. Potaturkin
Institute of Automation and Electrometry, Siberian Branch; Novosibirsk State University
Email: borzov@iae.nsk.su
Rússia, pr. Akademika Koptyuga 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
A. Fedotov
Novosibirsk State University; Institute of Computational Technologies, Siberian Branch
Email: borzov@iae.nsk.su
Rússia, ul. Pirogova 2, Novosibirsk, 630090; pr. Akademika Lavrent’eva 6, Novosibirsk, 630090
Arquivos suplementares
