Analysis of the efficiency of classification of hyperspectral satellite images of natural and man-made areas


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The efficiency of a number of the classical methods of supervised classification of hyperspectral data is estimated by an example of discriminating the types of the underlying surface in natural and man-made areas. The minimum distance, support vector machine, Mahalanobis, and maximum likelihood methods are considered. Particular attention is paid to studying the dependence of the data classification accuracy on the number of spectral features and the way of choosing them in the above-mentioned methods. Experimental results obtained by processing real hyperspectral images of landscapes of various types are reported.

Sobre autores

S. Borzov

Institute of Automation and Electrometry, Siberian Branch

Autor responsável pela correspondência
Email: borzov@iae.nsk.su
Rússia, pr. Akademika Koptyuga 1, Novosibirsk, 630090

A. Potaturkin

Institute of Automation and Electrometry, Siberian Branch

Email: borzov@iae.nsk.su
Rússia, pr. Akademika Koptyuga 1, Novosibirsk, 630090

O. Potaturkin

Institute of Automation and Electrometry, Siberian Branch; Novosibirsk State University

Email: borzov@iae.nsk.su
Rússia, pr. Akademika Koptyuga 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

A. Fedotov

Novosibirsk State University; Institute of Computational Technologies, Siberian Branch

Email: borzov@iae.nsk.su
Rússia, ul. Pirogova 2, Novosibirsk, 630090; pr. Akademika Lavrent’eva 6, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2016