Analysis of the efficiency of classification of hyperspectral satellite images of natural and man-made areas


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The efficiency of a number of the classical methods of supervised classification of hyperspectral data is estimated by an example of discriminating the types of the underlying surface in natural and man-made areas. The minimum distance, support vector machine, Mahalanobis, and maximum likelihood methods are considered. Particular attention is paid to studying the dependence of the data classification accuracy on the number of spectral features and the way of choosing them in the above-mentioned methods. Experimental results obtained by processing real hyperspectral images of landscapes of various types are reported.

作者简介

S. Borzov

Institute of Automation and Electrometry, Siberian Branch

编辑信件的主要联系方式.
Email: borzov@iae.nsk.su
俄罗斯联邦, pr. Akademika Koptyuga 1, Novosibirsk, 630090

A. Potaturkin

Institute of Automation and Electrometry, Siberian Branch

Email: borzov@iae.nsk.su
俄罗斯联邦, pr. Akademika Koptyuga 1, Novosibirsk, 630090

O. Potaturkin

Institute of Automation and Electrometry, Siberian Branch; Novosibirsk State University

Email: borzov@iae.nsk.su
俄罗斯联邦, pr. Akademika Koptyuga 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

A. Fedotov

Novosibirsk State University; Institute of Computational Technologies, Siberian Branch

Email: borzov@iae.nsk.su
俄罗斯联邦, ul. Pirogova 2, Novosibirsk, 630090; pr. Akademika Lavrent’eva 6, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016