Analysis of the efficiency of classification of hyperspectral satellite images of natural and man-made areas
- Авторлар: Borzov S.M.1, Potaturkin A.O.1, Potaturkin O.I.1,2, Fedotov A.M.2,3
-
Мекемелер:
- Institute of Automation and Electrometry, Siberian Branch
- Novosibirsk State University
- Institute of Computational Technologies, Siberian Branch
- Шығарылым: Том 52, № 1 (2016)
- Беттер: 1-10
- Бөлім: Analysis and Synthesis of Signals and Images
- URL: https://journals.rcsi.science/8756-6990/article/view/211905
- DOI: https://doi.org/10.3103/S8756699016010015
- ID: 211905
Дәйексөз келтіру
Аннотация
The efficiency of a number of the classical methods of supervised classification of hyperspectral data is estimated by an example of discriminating the types of the underlying surface in natural and man-made areas. The minimum distance, support vector machine, Mahalanobis, and maximum likelihood methods are considered. Particular attention is paid to studying the dependence of the data classification accuracy on the number of spectral features and the way of choosing them in the above-mentioned methods. Experimental results obtained by processing real hyperspectral images of landscapes of various types are reported.
Негізгі сөздер
Авторлар туралы
S. Borzov
Institute of Automation and Electrometry, Siberian Branch
Хат алмасуға жауапты Автор.
Email: borzov@iae.nsk.su
Ресей, pr. Akademika Koptyuga 1, Novosibirsk, 630090
A. Potaturkin
Institute of Automation and Electrometry, Siberian Branch
Email: borzov@iae.nsk.su
Ресей, pr. Akademika Koptyuga 1, Novosibirsk, 630090
O. Potaturkin
Institute of Automation and Electrometry, Siberian Branch; Novosibirsk State University
Email: borzov@iae.nsk.su
Ресей, pr. Akademika Koptyuga 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
A. Fedotov
Novosibirsk State University; Institute of Computational Technologies, Siberian Branch
Email: borzov@iae.nsk.su
Ресей, ul. Pirogova 2, Novosibirsk, 630090; pr. Akademika Lavrent’eva 6, Novosibirsk, 630090
Қосымша файлдар
