Analysis of the efficiency of classification of hyperspectral satellite images of natural and man-made areas


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The efficiency of a number of the classical methods of supervised classification of hyperspectral data is estimated by an example of discriminating the types of the underlying surface in natural and man-made areas. The minimum distance, support vector machine, Mahalanobis, and maximum likelihood methods are considered. Particular attention is paid to studying the dependence of the data classification accuracy on the number of spectral features and the way of choosing them in the above-mentioned methods. Experimental results obtained by processing real hyperspectral images of landscapes of various types are reported.

Авторлар туралы

S. Borzov

Institute of Automation and Electrometry, Siberian Branch

Хат алмасуға жауапты Автор.
Email: borzov@iae.nsk.su
Ресей, pr. Akademika Koptyuga 1, Novosibirsk, 630090

A. Potaturkin

Institute of Automation and Electrometry, Siberian Branch

Email: borzov@iae.nsk.su
Ресей, pr. Akademika Koptyuga 1, Novosibirsk, 630090

O. Potaturkin

Institute of Automation and Electrometry, Siberian Branch; Novosibirsk State University

Email: borzov@iae.nsk.su
Ресей, pr. Akademika Koptyuga 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

A. Fedotov

Novosibirsk State University; Institute of Computational Technologies, Siberian Branch

Email: borzov@iae.nsk.su
Ресей, ul. Pirogova 2, Novosibirsk, 630090; pr. Akademika Lavrent’eva 6, Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2016