SELECTION OF AN AMINO ACID SITE WITH ONE OF THE FASTEST CLEAVAGE KINETICS BY THE ENDOSOMAL PROTEASE CATHEPSIN B FOR POTENTIAL USE IN DRUG DELIVERY SYSTEMS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Based on known literature data, six peptide sequences were selected that are potentially capable of being rapidly cleaved by the endosomal protease cathepsin B. For comparison, cathepsin B cleavage of common linker sequences, polyglycine and polyglycine-serine, was also studied. Different ends of these peptides were labeled with sulfoCyanine3 and sulfoCyanine5 fluorescent dyes, between which Förster resonant energy transfer (FRET) is possible. The kinetics of cleavage of peptides by cathepsin B was studied on a multimodal plate reader by FRET signal reduction. FKFL and FRRG cleavage sites have been shown to be the most suitable for potential use in various drug delivery systems. These sites are much more efficiently cleaved under slightly acidic conditions of endosomes than at neutral extracellular pH.

作者简介

Y. Khramtsov

Institute of Gene Biology, RAS

编辑信件的主要联系方式.
Email: ykhram2000@mail.ru
Russian, Moscow

G. Georgiev

Institute of Gene Biology, RAS

Email: alsobolev@yandex.ru
Russian, Moscow

A. Sobolev

Institute of Gene Biology, RAS; Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: alsobolev@yandex.ru
Russian, Moscow; Russian, Moscow

参考

  1. Liu G., Yang L., Chen G., et al. // Front Pharmacol. 2021. V. 12. 735446.
  2. Sobolev A.S. // Front Pharmacol. 2018. V. 9. 952.
  3. Kern H.B., Srinivasan S., Convertine A.J., et al. // Mol Pharmaceutics. 2017. V. 14. № 5. P. 1450–1459.
  4. Bottcher-Friebertshauser E., Garten W., Klenk H.D. // Activation of viruses by host proteases. 2018. Springer. 337 p.
  5. Jin X., Zhang J., Jin X., et al. // ACS Med Chem Lett. 2020. V. 11. № 8. P. 1514–1520.
  6. Shim M.K., Park J., Yoon H.Y., et al. // J Contr Rel. 2019. V. 294. P. 376–389.
  7. Poreba M., Rut W., Vizovisek M., Groborz K., et al. // Chem Sci. 2018. V. 9. P. 2113–2129.
  8. Jordans S., Jenko-Kokalj S., Kuhl N.M., et al. // BMC Biochemistry. 2009. V. 10, 23.
  9. Biniossek M.L., Nagler D.K., Becker-Pauly C., et al. // J. Proteome Res. 2011. V. 10. P. 5363.
  10. Khramtsov Y.V., Vlasova A.D., Vlasov A.V., et al. // Acta Cryst. 2020. V. D76. P. 1270–1279.
  11. Aggarwal N., Sloane B.F. // Proteomics Clin Appl. 2014. V. 8. P. 427–437.
  12. Zhang X., Lin Y., Gillies R.J. // J Nucl Med. 2010. V. 51. P. 1167–1170.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (216KB)
3.

下载 (57KB)
##common.cookie##