SELECTION OF AN AMINO ACID SITE WITH ONE OF THE FASTEST CLEAVAGE KINETICS BY THE ENDOSOMAL PROTEASE CATHEPSIN B FOR POTENTIAL USE IN DRUG DELIVERY SYSTEMS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on known literature data, six peptide sequences were selected that are potentially capable of being rapidly cleaved by the endosomal protease cathepsin B. For comparison, cathepsin B cleavage of common linker sequences, polyglycine and polyglycine-serine, was also studied. Different ends of these peptides were labeled with sulfoCyanine3 and sulfoCyanine5 fluorescent dyes, between which Förster resonant energy transfer (FRET) is possible. The kinetics of cleavage of peptides by cathepsin B was studied on a multimodal plate reader by FRET signal reduction. FKFL and FRRG cleavage sites have been shown to be the most suitable for potential use in various drug delivery systems. These sites are much more efficiently cleaved under slightly acidic conditions of endosomes than at neutral extracellular pH.

Sobre autores

Y. Khramtsov

Institute of Gene Biology, RAS

Autor responsável pela correspondência
Email: ykhram2000@mail.ru
Russian, Moscow

G. Georgiev

Institute of Gene Biology, RAS

Email: alsobolev@yandex.ru
Russian, Moscow

A. Sobolev

Institute of Gene Biology, RAS; Lomonosov Moscow State University

Autor responsável pela correspondência
Email: alsobolev@yandex.ru
Russian, Moscow; Russian, Moscow

Bibliografia

  1. Liu G., Yang L., Chen G., et al. // Front Pharmacol. 2021. V. 12. 735446.
  2. Sobolev A.S. // Front Pharmacol. 2018. V. 9. 952.
  3. Kern H.B., Srinivasan S., Convertine A.J., et al. // Mol Pharmaceutics. 2017. V. 14. № 5. P. 1450–1459.
  4. Bottcher-Friebertshauser E., Garten W., Klenk H.D. // Activation of viruses by host proteases. 2018. Springer. 337 p.
  5. Jin X., Zhang J., Jin X., et al. // ACS Med Chem Lett. 2020. V. 11. № 8. P. 1514–1520.
  6. Shim M.K., Park J., Yoon H.Y., et al. // J Contr Rel. 2019. V. 294. P. 376–389.
  7. Poreba M., Rut W., Vizovisek M., Groborz K., et al. // Chem Sci. 2018. V. 9. P. 2113–2129.
  8. Jordans S., Jenko-Kokalj S., Kuhl N.M., et al. // BMC Biochemistry. 2009. V. 10, 23.
  9. Biniossek M.L., Nagler D.K., Becker-Pauly C., et al. // J. Proteome Res. 2011. V. 10. P. 5363.
  10. Khramtsov Y.V., Vlasova A.D., Vlasov A.V., et al. // Acta Cryst. 2020. V. D76. P. 1270–1279.
  11. Aggarwal N., Sloane B.F. // Proteomics Clin Appl. 2014. V. 8. P. 427–437.
  12. Zhang X., Lin Y., Gillies R.J. // J Nucl Med. 2010. V. 51. P. 1167–1170.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (216KB)
3.

Baixar (57KB)

Declaração de direitos autorais © Ю.В. Храмцов, Г.П. Георгиев, А.С. Соболев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies