Vol 29, No 2 (2019)

Cover Page

Full Issue

Информационные системы

Providing Invariance to Disturbing Effects in Rail Lines

Tarasov E.M., Zheleznov D.V., Vasin N.N., Tarasova A.E.

Abstract

Introduction. The time interval systems for controlling train movement operated under the influence of significant industrial disturbances, interference from the electric current of traction rolling stocks, and significant climate changes that result in fluctuations of parameters of circuit elements. 
Materials and Methods. To solve the problem, various methodologies of compensation for disturbances are considered in the paper; the method of coordinate compensation for disturbances at the input of a quadripole of rail lines is adopted as the main one. The equation of the transfer function of the correcting link is determined, assuming an indirect measurement of the input resistance of the rail line, which is a function of the conductivity of the insulation.
Results. The article presents the results of the research of the invariant capabilities of the disturbance compensation principle. It is shown that disturbances compensation with a corrective link included at the input of a quadripole allows one to significantly reduce the dynamic range of the output informative signal change in each of the classes, i.e. classes have become more compact, and the quality of classification has become 5 times higher than in the absence of compensation of disturbances.
Discussion and Conclusion. The results confirm the effectiveness of the proposed method for the coordinate compensation of disturbances in rail lines with an open circuit in the absence of the possibility for organizing feedback, a variable circuit in each of the classes of states, and the impossibility of creating a physical additional channel for the transmission of the disturbance. Using the proposed method in the construction of modern classifiers will significantly improve the stability of the functioning of train control systems; eliminate errors of the first kind, leading to unproductive idle train, and errors of the second kind, leading to accidents and crashes.

Engineering technologies and systems. 2019;29(2):152-168
pages 152-168 views

The Quadcopter Design Based on Integrated Model Environment

Chugunov M.V., Polunina I.N., Popkov M.A.

Abstract

Introduction. The deals with the multi/interdisciplinary approach to designing the unmanned aerial vehicle (quadcopter) based on the use of the integrated model environment. The designing process is implemented as creating different types of models: natural (physics) and virtual.
Materials and Methods. The virtual model is understood to be a set of mathematical, algorithmic, program and 3D models maintaining its functioning in virtual environment. The design decision represents a set of the design-technology documentation including the integrated model of the designed project, whose components are connected with each other. The natural (physics) part of the integrated model environment includes the following components: a carrier system, shell details, electromechanical and electronic systems for controlling navigation, telemetry and sensory. 
Results. The integrated (natural and virtual) model environment for the quadcopter is developed. On this basis, the design decision in the form of a real object and its virtual model is made. The state and behaviour of these objects is controlled and guided by the software having access both to a real object and to its 3D model. The received result can be considered as the tool of engineering for the solution of a wide range of scientific, technical and production tasks: performing defectoscopy, diagnosing emergencies, and 3D-scanning remote and hard-to-reach objects.
Discussion and Conclusion. The research shows the efficiency of the approach to designing as to process of creating the multi/interdisciplinary models of different types and levels. At the same time, the problem of integrating these models into a coherent whole by forming bidirectional associative communications has assumed particular importance. The technological (program) means for synchronizing a state and behaviour of the natural and virtual models of design objects require further development.

Engineering technologies and systems. 2019;29(2):169-186
pages 169-186 views

The Multiplication Method with Scaling the Result for High-Precision Residue Positional Interval Logarithmic Computations

Korzhavina A.S., Knyazkov V.S.

Abstract

Introduction. The solution of the simulation problems critical to rounding errors, including the problems of computational mathematics, mathematical physics, optimal control, biochemistry, quantum mechanics, mathematical programming and cryptography, requires the accuracy from 100 to 1 000 decimal digits and more. The main lack of high-precision software libraries is a significant decrease of the speed-in-action, unacceptable for practical problems, in particular, when performing multiplication. A way to increase computation performance over very long numbers is using the residue number system. In this work, we discuss a new fast multiplication method with scaling the result using original hybrid residue positional interval logarithmic floating-point number representation.
Materials and Methods. The new way of the organizing numerical information is a residue positional interval logarithmic number representation in which the mantissa is presented in the residue number system, and information on an absolute value (the characteristic) in the interval logarithmic number system that makes it possible to accelerate performance of comparison and scaling is developed to increase the speed of calculations; to compare modular numbers, the provisions of interval analysis are used; to scale modular numbers, the properties of the logarithmic number system and approximate interval calculations using the Chinese reminder theorem are used.
Results. A new fast multiplication method of floating-point residue-represented numbers is developed and patented; the authors evaluated the developed method speed-in action, compared the developed method with classical and pipelined multiplication methods of long numbers.
Discussion and Conclusion. The developed method is 2.4–4.0 times faster than the pipelined multiplication method, and is 6.4–12.9 times faster than classical multiplication methods.

Engineering technologies and systems. 2019;29(2):187-204
pages 187-204 views

The Neural Network Analysis of Normality of Small Samples of Biometric Data through Using the Chi-Square Test and Anderson–Darling Criteria

Volchikhin V.I., Ivanov A.I., Bezyaev A.V., Kupriyanov E.N.

Abstract

Introduction. The aim of the work is to reduce the requirements to test sample size when testing the hypothesis of normality.
Materials and Methods. A neural network generalization of three well-nown statistical criteria is used: the chi-square criterion, the Anderson–Darling criterion in ordinary form, and the Anderson–Darling criterion in logarithmic form.
Results. The neural network combining of the chi-square criterion and the Anderson–Darling criterion reduces the sample size requirements by about 40 %. Adding a third neuron that reproduces the logarithmic version of the Andersоn–Darling test leads to a small decrease in the probability of errors by 2 %. The article deals with single-layer and multilayer neural networks, summarizing many currently known statistical criteria.
Discussion and Conclusion. An assumption has been made that an artificial neuron can be assigned to each of the known statistical criteria. It is necessary to change the attitude to the synthesis of new statistical criteria that previously prevailed in the 20th century. There is no current need for striving to create statistical criteria for high power. It is much more advantageous trying to ensure that the data of newly synthesized statistical criteria are low correlated with many of the criteria already created.

Engineering technologies and systems. 2019;29(2):205-217
pages 205-217 views

Физика

Modelling the Temperature Field of a Surface in Using Electrospark Alloying of Metals

Vlasenko V.D., Ivanov V.I., Aulov V.F., Konevtsov L.A., Martynova E.G., Hasan I.H.

Abstract

Introduction. At present, the problem of increasing performance properties of machine parts, tools and tooling by improving the physical, chemical and mechanical characteristics of their executive working surfaces is relevant. One of the modern methods of obtaining coatings on the surfaces of parts is the method of electrospark alloying. 

Materials and Methods. To form doped layers in a drop-shaped electro- ass transfer, we used iron in the form of a parallelepiped as a being processed material (cathode) and tungsten was used as a processing material (anode). A nonlinear initial boundary value problem and a computational scheme are suggested for determining the temperature at all points (temperature field) of the cathode made in the form of a parallelepiped with the location of several heat-emitting drops on its face.

Results. The paper presents an algorithm for solving the problem by the second Green’s formula of finding the temperature field in the cathode made in the form of a parallelepiped, in this case the described nonlinear model of the flow from droplets to the parallelepiped is replaced by a linear model. An algorithm is constructed and calculations are carried out to determine the temperature values at all points and the temperature flow in the cathode in the case of one average drop on its face. 
Discussion and Conclusion. To achieve higher coating properties and a greater efficiency of the electrospark alloying, it is necessary to calculate the temperature field and heat flow of the cathode points under studying. The proposed mathematical model is calculated for the case of one drop placed on the boundary of a heat-conducting half-space. When choosing an anode material depending on the erosion resistance to obtain the required thickness of the surface layers with the specified functional properties, the developed calculation method is used.

Engineering technologies and systems. 2019;29(2):218-233
pages 218-233 views

Cooperative Motion of Electrons on the Graphene Surface

Yudenkov A.V., Volodchenkov A.M., Iudenkova M.A.

Abstract

Introduction. Today, the development of the graphene theory to control its physical and mechanical properties is a relevant objective. The paper deals with the conducting properties of graphene. In particular, the paper investigates the linear law of electron dispersion and traces its corollaries.
Materials and Methods. The development of the theory is based on the verified experimental data and on the foundamental principles of the solid body theory and quantum mechanics. The study follows the universal synergetic principle according to which, there have been developed two split-level mathematical models of the quasi-particle motion in graphene on exposure to the electric field. On the macroscopic level, we suggest that graphene should be analyzed as a crystal consisting of three parallel planes. Two of them are electron gas. The remaining one is the main body of the crystal. 
Results. The study has developed the alternative method for the explanation of the linear dispersion law in graphene on the macroscopic level. Basing on the analysis of the model, the paper provides a hypothesis of the cooperative motion of the electron pairs, which make up a boson particle. The given hypothesis is different from the traditional one. In accordance with the latter, quasi-particles in graphene are Dirac fermions. To prove the hypothesis consilience, the study examines Hall’s effect in grapheme. The linear dispersion law for a pair of electrons is also deduced from the Schroedinger equation. Both the macroscopic and microscopic models are in a reasonable agreement with the experimental data.
Discussion and Conclusion. The main result of the research is the development of the multi-level mathematical model which properly features the conducting properties of graphene (linear dispersion law, anomalous Hall effect). The practical relevance consists in revealing the possibility to control the conducting properties of graphene through impacts on electron pairs.

Engineering technologies and systems. 2019;29(2):234-247
pages 234-247 views

Technologies and Means of Agricultural Mechanization

Investigation of Grain Movement Parameters in the Liquid of the Device for Removing Ergot

Sysuev V.A., Saitov V.Е., Farafonov V.G., Saitov A.V.

Abstract

Introduction. When harvesting grain crops, various trash and harmful impurities come to the combine bunker together with grains. Various modern grain cleaning machines do not provide for complete separation of ergot sclerotia from grains, because of the closeness of their linear dimensions (width, thickness and length) and speed of soaring. Cleaning seeds from ergot sclerotia having the density less than density of grain, is possible in an aqueous solution of salt. 
Materials and Methods. The immersion of separately taken rye grains in water (ρzh = 1,0 ∙ 103 kg/m3) and aqueous solutions of sodium chloride (NaCl) with density ρzh = 1,09 ∙ 103 kg/m3 and ρzh = 1,15 ∙ 103 kg/m3. The ellipsoid is taken as the geometric model of the grains. Theoretical studies were performed for the grain density ρz from 1.2 ∙103 kg/m3 to 1.5 ∙ 103 kg/m3, lengths lz from 5.0 · 10–3 m to 10.0·10–3 m, widths b from 1.4 · 10–3 m to 3.6 · 10–3 m and thickness δ from 1.2 · 10–3 m to 3.5 · 10–3 m based on the methods of mathematical modelling using the laws of hydrodynamics.
Results. The speed ʋz and duration tп of grain immersion in liquids are main parameters taken into account when developing a machine for cleaning the grain material from ergot sclerotia with a wet method. To determine these parameters, it is necessary to take into account the geometric shapes of the grains, which have a large variety. 

Discussion and Conclusion. It is established that the calculated values of the speed of grain immersion in liquids of different density are comparable with the experimental values of the same order. They are close and differ by no more than 10 %. 

Engineering technologies and systems. 2019;29(2):248-264
pages 248-264 views

Technological Properties of Radish

Ashitko A.A., Gavrish E.A., Nesmiyan A.Y., Kolesnik R.Y.

Abstract

Introduction. When cultivating root crops, harvesting is one of the most important operations. In industrial production, the technique for harvesting beets, carrots, black radishes, chicory, etc. is widely known, except for radishes, which differ significantly in the sowing scheme, maturation periods, and in physical and mechanical properties of the plants. In the study dealing with the development of small-scale mechanization for harvesting radishes, the authors made a determination of basic physical and mechanical properties of this plant.
Materials and Methods. The study was conducted for the two radish varieties (Celeste and Belokrayka), typical for the Southern and North Caucasus federal districts of Russia. In doing so, the known methods were used to determine the size, mass and frictional characteristics of radishes.
Results. It was established that the Celeste radishe was 1.2–2.1 times larger than the Belokrayka radish and 1.8–2.8 times heavier. The weight of the radish roots (10...28 g.) in the total mass of the plant was 52–90 %, and the weight was 0.5–0.6 %. The average diameter of the radish roots was 26.7–34 mm, with a coefficient of variation (V) about 13–14 %, radish root height was 29–45 mm (at V ≈ 18–20 %). A direct correlation between all the dimensions considered was found. The coefficient of the static friction of radish roots with unpainted steel was 0.63–0.66, the movement was 0.44–0.58. Frictional characteristics of the stems of the radish leaves were 1.25 times higher on the average. The diameter of the bundle of stems at the proposed cut end was 9–12 mm.
Discussion and Conclusion. In general, the physical and mechanical characteristics of radishes depend significantly on their variety, maturity, freshness and other factors, so the results of the study vary significantly. 

Engineering technologies and systems. 2019;29(2):265-278
pages 265-278 views

The Method of Calculating Cut Length for Flail and Double Chop Forage Harvesters

Belov M.I.

Abstract

Introduction. Many studies show that the chopped feed quality depends on the plants chopping quality. The quality of plant chopping, provided by a forage harvester, is defined by particle length distribution. It is important to find the theoretical basis of grass chopping regimes for making haylage and other kinds of feeds. The purpose of this study is to develop an algorithm and techniques to assess the quality of plant chopping based on mathematical models of chopping with the flail and double chop forage harvesters.
Materials and Methods. Mathematical models of a flail type unit and double chop unit were presented and used to develop the algorithms and method of calculating the cut length distribution.
Results. The algorithms and computation methods of cut length distribution were presented for a flail type unit and a double chop unit. The effect of the plant height, the height of cut, feed and the average length of cut on the mass fraction of particles within the specified ranges of lengths were investigated.
Discussion and Conclusion. A flail forage harvester is not able to harvest the grass crops for making haylage with 45–75 % forage particles, the length of which is in the range from 8 mm to 19 mm. A double chop forage harvester allows harvesting the grass crops for making haylage only when auger angular velocity and/or flywheel or cylinder drum angular velocity is regulated. A double chop device can be used to chop plants for preparation of various forages if auger angular velocity and/or flywheel or cylinder drum’s angular velocity is regulated.

Engineering technologies and systems. 2019;29(2):279-294
pages 279-294 views

Технологии и средства технического обслуживания в сельском хозяйстве

Changing the Contact Wetting Angles when Adding Surface-Active Substances to Washing Solutions

Byshov N.V., Uspensky I.A., Alekseev V.V., Fadeev I.V.

Abstract

Introduction. The technological processes of the washing contaminations are largely determined by the nature of the surface being cleaned, the contamination type and the environment, in which the cleaning is carried out. The efficiency of the process depends on the contact of the detergent with the surface being washed. The wetting characteristic is a contact angle, which is a measure of the relative attraction of a liquid to a solid and to liquid itself. The physico-chemical activity of the washing medium determines the costs and, consequently.
Materials and Methods. The determination of the contact wetting angle is based on the statistical processing of a photograph of a detergent drop on a horizontal surface by a specially created program that allows obtaining an array of data to describe the shape of a drop from which the contact wetting angle is calculated. The values of the contact wetting angle were measured when varying concentrations of such synthetic detergents as Labomid-203, MS-8, ML-51, etc. Multiplicative power functions connecting the magnitude of the contact wetting angle with surfactant concentrations were obtained.
Results. The studies has shown that an increase in the concentration of potassium monoborate with Labomid-203 by 1 % leads to a decrease in the contact wetting angle by 0.54 %; potassium monoborate with MS-8 by 0.78 %; and potassium monoborate with ML-51 by 0.48 %, the function shows a decreasing return to an increase in concentration.

Discussion and Conclusion. In all the considered cases, a decreasing return of the magnitude of the contact wetting angle to an increase in the concentration of surfactants was established, regardless of which combination of substances was used. That is, the investigated concentrations of surfactants exceeded the limit value when they gave an increasing return to the increase in their content in the washing solution.  

Engineering technologies and systems. 2019;29(2):295-305
pages 295-305 views

Photoluminescence Monitoring the Ripeness of Cereal Seeds during Ripening

Belyakov M.V.

Abstract

Introduction. To assess objectively the ripeness plant seeds is one of the areas of developing agricultural electrotechnical technologies. Optical methods and diagnostic tools are highly accurate, selective, and express, and can be easy integrated into existing modern agricultural machines and devices.
Materials and Methods. The exploratory research of optical spectral luminescent properties of cereal seeds of defferent ripeness levels was carried out. The lots of oat and wheat seeds of the milky, milky-wax, and waxy ripeness, as well as ripe seeds were selected. The study was conducted on the spectrofluorometer “Fluorat-02-Panorama”. The spectra of synchronous scan excitation were measured based on the seed luminescence spectra. 
Results. The seeds of milky ripeness have the highest peak of excitation at a wavelength of about 362 nm and significantly less values at 424 nm. In ripe seeds there is no short-wave peak (λmax = 362 nm). There are remain peaks of 424 nm and 485 nm, and the long-wave peak increases with increasing ripeness. With increasing seed ripeness, the ratio of longwave to the shortwave flux increases. The dependences can be statistically reliably approximated linearly. The obtained dependences can be used to determine the seed physiological ripeness degree. There have been proposed a technique for determining the ripeness of cereal seeds during their riping, including sample preparation, excitation of luminescence in the short-wave and long-wave ranges, its registration. To implement the method, the design of the device for objective rapid analysis of the stage of seed physiological ripeness was developed.
Discussion and Conclusion. During the ripening of cereal seeds, the ratio of their excitation levels and luminescence fluxes changes: for immature seeds, short-wave luminescence is characteristic, while in mature seeds, long-wave luminescence prevails. The dependence of the ratio of photoluminescence fluxes on the ripeness time is an increasingone.

Engineering technologies and systems. 2019;29(2):306-319
pages 306-319 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».