Comparative Analysis of Text Comprehension by Human and Artificial Intelligence

Capa

Citar

Resumo

The purpose of the study is to systematize and generalize the cognitive process of understanding text by humans and artificial intelligence. The article provides a comparative analysis using a specific model of text understanding and substantiates the importance of context and subjective perception. Psycholinguistic analysis helps to describe the cognitive processes of human understanding of text. Computer analysis provides a description of machine learning algorithms and artificial neural networks. As a result of the comparative analysis, it is revealed that human understanding of a text includes not only rational analysis, but also cultural, emotional and individual experience. A person, unlike artificial intelligence, is capable of a deeper interpretation of the semantic and emotional content of a text.

Sobre autores

Olesya Kunitsyna

Moscow State Linguistic University

Autor responsável pela correspondência
Email: kunitsyna_mglu@mail.ru

PhD (Philology), Assistant Professor at the Department of Linguistics and Professional Communication in the Field of Law Institute of International Law and Justice

Rússia

Bibliografia

  1. Gorozhanov, A. I., Guseinova, I. A. (2021). Applied aspects of analysis and interpretation of texts (based on the material of the German and Russian languages) = Prikladnye aspekty analiza i interpretacii tekstov (na materiale nemeckogo i russkogo yazykov). Kazan: Buk. (In Russ.)
  2. Sonin, A. G. (2005). Understanding polycode texts: cognitive aspect = Ponimanie polikodovyh tekstov: kognitivnyj aspekt. Moscow. (In Russ.)
  3. Van Dijk, T. A., Kinch, V. (1988). Strategies for understanding a connected text. In New in foreign linguistics, 23. Cognitive aspects of language (pp. 153–212). (In Russ.)
  4. Stöckl, H. (2016). Multimodales Verstehen – Zwischen Zeichensystemwissen und Textsortenkompetenz. Sachs-Hombach Klaus (Hrsg.) Verstehen und Verständigung. Intermediale, multimodale und interkulturelle Aspekte von Kommunikation und Ästhetik. Köln: Halem.
  5. Dzyaloshinsky, I. M. (2022). Kognitivnye processy cheloveka i iskusstvennyj intellekt v kontekste cifrovoj civilizacii = Human cognitive processes and artificial intelligence in the context of digital civilization. Moscow: IPR Media. (In Russ.)
  6. Funk, M. (2023) Künstliche Intelligenz, Verkörperung und Autonomie. Springer Vieweg Wiesbaden.
  7. Richter, T., Schnotz, W. (2018). Textverstehen = Text understanding. In Rost, D., Sparfeldt, J. (Eds.), Handwörterbuch Pädagogische Psychologie.
  8. Ovchinnikova, E. (2012). Integration of world knowledge for natural language understanding. Paris: Atlantis Press.
  9. Maksimov, Yu. V., Klyshinsky, E. S., Antonov, N. V. (2016). The problem of understanding in the field of computer artificial intelligence. New technologies in automated technologies, 19, 43–60. (In Russ.)
  10. Gorozhanov, A. I., Guseynova, I. A., Stepanova, D. V. (2022). Tools for automated analysis of fiction work translation. Issues of applied linguistics, 45, 62–89. 10.25076/vpl.45.03. (In Russ.)
  11. Vangaeva, F. M., Taisumova, H. V. (2020). Problems of artificial intelligence learning and artificial intelligence learning. In V poiskah social’noj istiny (pp. 308–311): Materials of the II International Scientific and Practical Conference. (In Russ.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).