Proceeding of the Institute for Systems Analysis of the Russian Academy of Science

Scientific journal "Trudy Instituta sistemnogo analiza Rossiyskoy akademii nauk (ISA RAN)"publishes materials on  a wide range of fundamental problems of developing sistems analysis methodology and its applying to solving various problems in the field of  science and practice. The journal is destinet for scientists and researches working within the framework of these problems, as well as for politicians, employees of state and minicipal depaptments, specialists of enterprises and representatives of social organizations. The rules for articles submission to the journal, as well as for their rewief are given at the journal" s site

The journal is registered in Federal service of observing and controlling legislation in the area of mass media and protection of cultural heritage in 20 of May 2016.   Digital certificate - PI № FS77-65718.

Journal Subscription Index in the Ural-Press e-catalog (http://ural-press.ru) is 36089.  

The journal is supported by the Department of Information Technologies and Computing Systems of the Russian Academy of Sciences.

The journal is included in the list of leading peer-reviewed scientific journals recommended by the Higher Attestation Commission.

Edição corrente

Volume 75, Nº 2 (2025)

Mathematical Models of Socio-Economic Processes

Valuation of machines with a randomly decreasing service life
Smolyak S.
Resumo
We consider machines that are subject to a Poisson failure stream and whose operational characteristics deteriorate during operation. The market value of the new machine and its assigned service life are known. In case of machine failure, its remaining service life is abruptly shortened by a random value distributed according to a power law. A new model has been built that links the dynamics of the market value of the machine with its remaining service life. This is not enough for a practical valuation, since appraisers often only know their age about cars. However, the machines of the same age may be in different condition, and here appraisers have to rely on the dependence of the average cost of machines on age. We have obtained formulas for constructing similar dependencies, according to which experimental calculations have been carried out. It is shown that such dependencies change little when the discount rate and the assigned service life change, although they differ with different coefficients of service life variation.
Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2025;75(2):3-12
pages 3-12 views
State Infrastructure Projects as an Object of Situational Management
Mironova I., Tischenko T., Frolova M.
Resumo
The article examines the problems associated with calculating the public efficiency of transport infrastructure development projects in the current geopolitical and economic conditions of the country's development. A new approach to selecting infrastructure projects for public financing is proposed, which is characterized as an element of situational management of the industry.
Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2025;75(2):13-21
pages 13-21 views
Digital transformation of the healthcare system
Orlova E., Perligina M.
Resumo
The article provides a brief analysis of the directions of development of the digital economy in the country as a whole, and in the field of health care, in particular, studies theoretical and methodological approaches to the use of information technologies in medicine. It is shown that at first, digital transformation in healthcare was mainly associated with the automation of routine processes. Along with automation, digitalization is now in full swing, aimed at creating intelligent production systems that can adapt to changes in real time. But it should be emphasized that digital technologies are primarily designed to improve the healthcare system, improve quality and effectiveness of medical care. The introduction of digital technologies in medicine does not mean that they will completely replace the doctor.
Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2025;75(2):22-27
pages 22-27 views
On interrelation of organizational approaches to strategic analysis in the context of natural monopoly issues
Belousova N.
Resumo
The issues of organizational approaches interrelation developed within the framework of general organizational science/ tektology (organizational dialectics as its key component), and in the theory of natural monopoly are considered, with the expansion of the analytical possibilities for application. The methodological provisions of the strategic analysis of organizational transformations, based on organizational dialectics, are presented. The directions for the synthesis of organizational approaches are shown in terms of introducing into strategic analysis the elements of accumulated organizational experience regarding structural changes of railway transport in natural monopoly spheres, clarification the procedures for selecting activities in conjunction with procedures for natural monopoly identification, and expanded opportunities for interpreting identification results based on the ideas of organizational dialectics. The possibilities of involving in the analysis of organizational dynamics a combination of analytical mechanisms of tektology, and the elements of methodological potential of natural monopoly theory, which focused on diagnostics of organizational transformations, are determined.
Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2025;75(2):28-36
pages 28-36 views

Image and Signal Processing

Classification of a scanned document type using the dynamic time warping method
Maximova T., Bezmaternykh P.
Resumo
The work addresses an important problem in the field of automatic document image recognition: determining the type of a scanned document from a predefined set of possible types. The proposed document classification method compares parallel projections of the input image with reference projections of templates from the target set, which can be generated using just a few document image samples. The matching is performed using a dynamic time warping algorithm. The classification method requires neither prior binarization of the sample, nor keyword extraction or recognition, nor detection of geometric primitives. However, it does require preliminary image deskewing. Experiments were conducted on a manually normalized dataset of business documents comprising eight distinct types, achieving a classification accuracy of 99.79%. For the same images normalized automatically, the accuracy reached 99.76%. For the document type with the largest average image size (2479х3589 pxs), the average processing time is 12.31±1.53 ms on a PC with an AMD Ryzen 5 5600X CPU, 64GB RAM.
Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2025;75(2):37-48
pages 37-48 views

System analysis in medicine and biology

The use of correlation adaptometry techniques to evaluate the effectiveness of the treatment
Shpitonkov M.
Resumo
The method of correlation adaptometry was used to process physiological and biochemical data in patients with varying degrees of obesity during diet therapy, as well as in patients with various types of heart surgery. The effectiveness of diet therapy is shown and the effectiveness of the performed operations is evaluated using the technique of correlation adaptometry.
Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2025;75(2):49-55
pages 49-55 views
A systems analysis of the significance of factors influencing the epidemiological situation of tuberculosis in Russia
Krut'ko V., Smirnova T.
Resumo
A systematic analysis of the interrelationships between the indicators of the epidemic situation of tuberculosis (EST) and economic, demographic and climatic factors has shown that the effectiveness of managing this situation depends on the totality of factors that must be taken into account when developing optimal management strategies both in the Russian Federation and in other countries characterized by significant heterogeneity of regional characteristics. With significant differences between regions, management strategies should be based primarily on specific values of the dynamics of the studied factors within each region, rather than on generalized indicators of the country as a whole. Along with economic indicators, important determinants of EST in the subjects of the Russian Federation are the temperature regime and population density. The general economic level, which determines the quality of life in the constituent entities of the Russian Federation, has a stronger impact on EST than targeted financing of anti-tuberculosis measures.
Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2025;75(2):56-65
pages 56-65 views

Information Technologies

Increasing the speed of DBMS operations using hardware FPGA accelerators
Solovyev A.
Resumo
The article provides an overview of a way to speed up data processing operations in a DBMS using an FPGA. An overview of FPGA capabilities, FPGA usage architectures is performed, and practical examples of FPGA usage are considered. The advantages and disadvantages of using FPGA are determined. A number of problems and alternative technologies were noted, which significantly slowed down the use of FPGAs in industrial DBMS and data storage systems. Using FPGA to speed up data processing in a DBMS, it can be argued that the approach allows you to speed up database operations related to query processing, data compression and encryption, and parallel data processing. However, the use of FPGAs also complicates the system as a whole, does not allow for flexible and quick reconfiguration of the system's functionality, and increases the total cost of ownership. In further research, it is planned to consider alternative technologies for accelerating data processing operations.
Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2025;75(2):66-74
pages 66-74 views
Development of an SVM model for predictive maintenance of metal-cutting equipment
Javadov N., Amirov A., Ismayilov V.
Resumo
This article is devoted to the development of a machine learning model for optimizing cutting tool maintenance using the support vector machines (SVM). The paper considers the main stages of creating a multiclass classification model from pre-processing of raw signals to selection of hyperparameters. The choice of the algorithm is determined by computational efficiency, as well as the possibility of working with data with nonlinear structure. As a result of testing the model, the average accuracy reached 81%. The obtained results demonstrate that the algorithm based on the method of support vectors can handle the task in conditions of limited computational power.
Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2025;75(2):75-81
pages 75-81 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».