Development of an SVM model for predictive maintenance of metal-cutting equipment
- Authors: Javadov N.G.1, Amirov A.M.1, Ismayilov V.M.1
-
Affiliations:
- National Aerospace Agency
- Issue: Vol 75, No 2 (2025)
- Pages: 75-81
- Section: Information Technologies
- URL: https://journals.rcsi.science/2079-0279/article/view/317033
- DOI: https://doi.org/10.14357/20790279250209
- EDN: https://elibrary.ru/AMBERY
- ID: 317033
Cite item
Full Text
Abstract
About the authors
N. G. Javadov
National Aerospace Agency
Email: cavadov-natiq@mail.ru
Professor. Doctor of Technical Sciences Baku, Azerbaijan
A. M. Amirov
National Aerospace Agency
Email: ali.amirov@mail.com
Candidate of Technical Sciences Baku, Azerbaijan
V. M. Ismayilov
National Aerospace Agency
Email: ismailovvugar99@gmail.com
Baku, Azerbaijan
References
- Javadov N.G., Amirov A.M., Ismayilov V.M. 2024. Tehnicheskie aspekty sozdanija sistemy monitoringa metallorezhushhego oborudovanija s primeneniem mashinnogo obuchenija. Vestnik komp'juternyh i informacionnyh tehnologij 21(10):10–16. doi: 10.14489/vkit.2024.10.pp.010-016.
- Montero Jimenez J.J., Schwartz S., Vingerhoeds R., et al. Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics // Journal of Manufacturing Systems. 2020. Vol. 56. P. 539–557. doi: 10.1016/j.jmsy.2020.04.012.
- Fahle S., Prinz C., Kuhlenkötter B. Systematic review on machine learning (ML) methods for manufacturing processes – Identifying artificial intelligence (AI) methods for field application // Procedia CIRP. 2020. Vol. 93. P. 413–418. doi: 10.1016/j.procir.2020.04.109.
- Montero Jimenez J.J., Schwartz S., Vingerhoeds R., Grabot B., Salaün M. Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics // Journal of Manufacturing Systems. 2020. Vol. 56. P. 539–557. doi: 10.1016/j.jmsy.2020.04.012.
- Çınar Z.M., Nuhu A.A., Zeeshan Q., Korhan O., Asmael M., Safaei B. Machine learning in predictive maintenance towards sustainable smart manufacturing in Industry 4.0 // Sustainability. 2020. Vol. 12, No. 19. P. 8211. doi: 10.3390/su12198211.
- Krupitzer C., Wagenhals T., Züfle M., Lesch V., Schäfer D., Mozaffarin A., Edinger J., Becker C., Kounev S. A survey on predictive maintenance for Industry 4.0 // arXiv preprint. 2020. arXiv:2002.08224. doi: 10.48550/arXiv.2002.08224. URL: https://doi.org/10.48550/arXiv.2002.08224
- Munaro R., Attanasio A., Del Prete A. Tool wear monitoring with artificial intelligence methods: A review // Journal of Manufacturing and Materials Processing. 2023. Vol. 7, No. 4. P. 129. doi: 10.3390/jmmp7040129.
- James G., Witten D., Hastie T., Tibshirani R. An Introduction to Statistical Learning, With Applications in Python. 2nd ed. New York: Springer, 2023. 597 p.
- Vapnik V.N. The Nature of Statistical Learning Theory. New York: Springer, 2000. 314 p.
- Agogino A, Goebel K. Milling Data Set. 2007. doi:http://ti.arc.nasa.gov/project/prognostic-data-repository.
Supplementary files
