Vol 10, No 4 (2024)

ELECTRONICS, PHOTONICS, INSTRUMENTATION AND COMMUNICATIONS

Approach to Video Stream Quality Requirements Justification for FPV Control of Unmanned Systems

Berezkin A.A., Vivchar R.M., Kirichek R.V.

Abstract

Currently, hybrid orbital-ground communication networks play a key role in various sectors of the Russian economy, an important part of which are unmanned systems based on FPV control. One of the key elements of such systems is information exchange channels. The main criterion for the success of their objectives is to meet the requirements for the quality of the transmitted video stream, which makes it particularly relevant to substantiate these requirements. The purpose of this article is to present an approach to the quantitative justification of the requirements for the quality of the transmitted video stream. The essence of the presented approach lies in the fact that the required values of the transmitted image quality indicators, used to justify acceptable neural network codecs, are determined by analyzing various video streams, on the basis of which the impacts on the control of unmanned systems that allowed to achieve the goals of their functioning were formed. The main stages of the approach and their logical interrelation are considered. The proposed approach is based on the use of methods of statistical and risk analysis, the theory of experiment planning and probability theory.Scientific novelty of the proposed approach lies in the fact that the requirements to the quality of the video stream transmitted from the unmanned system to the operator, used to justify acceptable neural network codecs, are calculated by analyzing the totality of video streams that allowed to achieve the goals of its functioning, which allows to get rid of the subjectivism inherent in the expert methods currently used to solve this problem.Theoretical significance of the proposed approach lies in the fact that the necessity and possibility of not only substantiating the requirements for the quality indicators of the transmitted video stream for FPV control, but also their correction has been proved. Practical significance. The requirements for the quality indicators of the transmitted video stream obtained using the proposed approach can be further used to justify optimal design solutions for creating information exchange channels between unmanned systems and the operator, which will significantly increase the efficiency of using these systems.
Proceedings of Telecommunication Universities. 2024;10(4):7-15
pages 7-15 views

Method for Controlling Dispersion in Order to Maintain a Quasi-Soliton Pulse Propagation Mode in High-Speed Fiber-Optic Communications System

Bylina M.S., Glagolev S.F., Dotsenko S.E.

Abstract

Relevance: Every year, there is an increasing need to enhance the bandwidth and range of fiber-optic communication systems. The study of methods to control dispersion is relevant and helps maintain a quasi-soliton regime, which is essential for ensuring high-speed, reliable data transmission. Conducted modeling and calculations make this research practical and applicable. This will enable engineers to accurately predict the system's behavior and optimize its performance before implementing it in real-world networks.Problem statement: Investigation of the processes of maintaining a quasi-soliton regime in fibers with decreasing chromatic dispersion and alternating fibers with different signs of chromatic dispersion, both with and without initial chirping.Goal of the work: The development and analysis of techniques to control dispersion in order to maintain a quasi-soliton mode of light propagation in single-mode optical fibers.Methods: The study of the processes of maintaining a quasi-soliton regime was carried out by mathematical and numerical modeling. To substantiate the methods, theoretical analysis and calculations were carried out and schemes for a quasi-soliton fiber-optic communication system were developed and modeling was carried out.Result: The analysis of the results demonstrated the effectiveness of the proposed method and showed the efficiency and stability of the solutions in conditions that were close to real-world scenarios. Novelty: Models for maintaining a quasi-soliton regime and methods for studying them have been developed. The most effective ways to preserve quasi-soliton pulses over long distances have been analyzed.Practical significance: The developed models and research methods can be applied in the educational process and the development of real fiber-optic communication systems.
Proceedings of Telecommunication Universities. 2024;10(4):16-26
pages 16-26 views

Routing Task in Dynamic Fog Computing Network

Volkov A.N.

Abstract

Relevance. In the context of traffic growth, transition to IMT-2030 networks and Telepresence services, the tasks of efficient management of network and computing resources occupy a special place. Fog computing as the next stage of decomposition of the architecture of multi access edge cloud computing is designed to radically change the models and methods of distributing computing tasks, influencing, among other things, the user-operator interaction models. At the moment, there is a whole layer of scientific problems for revealing the possibilities of fog computing. They can be divided into a number of areas, such as: study of models and methods for implementing services of ultra-reliable and ultra-low latency communications, defined in IMT-2020 networks; study of models and methods for ensuring quality of service, including quality of experience; study of methods for live migration of microservices, as well as groups of typical microservices; study of models and methods for distributing resources of dynamic fog computing while ensuring the stability of fog computing forms (clusters, nebulae); one of the potentially effective areas is research in the field of combining federated learning with dynamic fog computing. This paper solves a routing problem that can be attributed to the direction of infrastructure research in dynamic fog computing.Problem statement: research and develop the effective methods for routes determination in a dynamic fog computing network, including tasks of migrating microservices of telepresence services. Goal of the work: research and development of an effective method for ways determination to migrate microservices in communication networks using fog computing technologies, which could take into account not only the characteristics of connections (edges of the network graph), but also the computing capabilities and limitations of fog computing devices, as well as their features - the dynamics of computing devices. Methods: in order to test the proposed method, the program model was developed in the NS-3 modeling environment. Result. Analysis of the results showed the effectiveness of the proposed method within the framework of the task and various application scenarios. Novelty. A microservice migration method has been developed as a new routing protocol in a dynamic fog computing environment, which differs from the known ones in that this method ensures the interaction of fog computing devices for migrating microservices, while achieving a reduction in energy consumption by fog computing devices by 41% and reducing the share of lost packages on average up to 34%. Practical significance: The developed method can be used to implement fog computing in conditions of mobility of end devices in order to achieve the requirements of promising services of IMT-2030 networks.
Proceedings of Telecommunication Universities. 2024;10(4):27-37
pages 27-37 views

Traffic Prediction as a Multidimensional Random Process in a Three-Dimensional High-Density Internet of Things Network

Elagin V.S., Grebenshchikova A.А.

Abstract

Relevance. The relevance of the topic considered in the article lies in the active transformation of communication networks and the formation of a three-dimensional high-density communication network, which changes the structure of data traffic, therefore, for this type of network, a traffic model is considered as a multidimensional random process. The main purpose of the study is to improve the efficiency of network traffic forecasting by developing a method, the distinctive feature of which is traffic forecasting as a multidimensional random process, taking into account the mutual dependence of individual flows produced by network nodes. Methods. The paper considers an algorithm for training an artificial neural network (ANN) based on the method of reducing the root of the mean square error RMSE, and also proposes forecasting methods using LSTM-type ANNs and adapting model parameters to changing network operating conditions. The use of LSTM-type ANN for forecasting a multivariate random process describing traffic in a three-dimensional high-density network can yield better results than forecasting individual traffic flows as independent random processes due to the consideration of mutual influences between different traffic flows.The results. Building the corresponding model, collecting statistics (obtaining a training sample), training the ANN and performing the forecast require the use of computing resources. Thus, the forecasting efficiency can be defined as a decrease in the forecasting error while maintaining the volume of resources used or a decrease in the volume of resources while maintaining the forecasting error. In the course of solving the scientific problem, criteria were identified for selecting the value of a unit interval (lag), which, together with the forecasting interval, significantly affects the final scenario.The theoretical significance The scientific novelty of the work lies in the assessment of the change in the error in forecasting the traffic of a three-dimensional high-density communication network as a multivariate random process, compared to presenting the forecast of the same traffic as a set of independent random processes.Significance (theoretical). The efficiency of traffic forecasting as a multidimensional random process in a three-dimensional high-density communication network increases with increasing dimensionality. Thus, such traffic in forecasting problems should be considered as a multidimensional random process, the dimensionality of which is equal to the number of network nodes producing traffic.Significance (practical). The results obtained in the work can be used in the future to optimize the functioning of the traffic management system.
Proceedings of Telecommunication Universities. 2024;10(4):38-47
pages 38-47 views

Implementation of a Highly Mobile UAVs Direction Finding Complex Using Virtual Magnetic Dipoles

Ishchenko E.A., Pasternak Y.G., Fedorov S.M., Barannikov I.A.

Abstract

Relevance. In the context of the development of modern broadband communication systems, the task of performing direction finding of signals using highly mobile direction finding systems (UAVs) is becoming especially urgent. They impose restrictions on the size of antenna elements and the distance between them, which leads to an increase in the mathematical error of the bearing. Problem statement. The paper sets the task of considering the possibility of increasing the direction finding accuracy of a highly mobile complex by using virtual magnetic dipole technology. A feature of this method is the minimization of distortions introduced by the carrier body into the characteristics of the measured field. To measure the field characteristics, as well as their partial components, vector antenna elements were used. Goal of the work is to study the characteristics of a radio direction finding complex using virtual magnetic dipole methods in conditions of distortions introduced by the carrier body. As an example, cases of direction finding of differently polarized waves, taking into account the influence of radomes of antenna elements, assessment of the maximum resolution accuracy, as well as noise stability are considered. The finite element method implemented in DS CST Studio Suite 2024 was used in the modeling. Result. During the research, a plane wave with different bearings fell on a UAV with a direction finding complex, which made it possible to carry out the most accurate research. The results of the work also include the creation of a model of a radio direction finding complex, which can be installed on a small UAV, providing high accuracy of wave direction finding in passive mode.The novelty of the method used lies in the application of methods for the formation of virtual magnetic dipoles based on the measured characteristics of the distorted electric field. New to this work are modeling cases that are associated with noise suppression, the influence of antenna element housings, as well as assessment of the maximum resolution accuracy.Practical significance of the work lies in the creation of a model of a radio location system based on vector antenna elements, which are used to measure the characteristics of the electromagnetic field with subsequent direction finding based on the magnetic field.
Proceedings of Telecommunication Universities. 2024;10(4):48-61
pages 48-61 views

Model and Methods of Traffic Routing in a Communication Network Using UAVs

Kuznetsov K.A., Paramonov A.I., Muthanna A.S., Kucheryavy A.E.

Abstract

Relevance. The development of 5G networks and subsequent generations is accompanied by the development of new services, in particular, virtual, augmented reality services, as well as telepresence, as well as radio access networks. In particular, there is an increase in operating frequencies, which poses additional challenges for organizing a network that can meet the requirements for the quality of traffic service from new services and ensure the availability of communication to users. These problems can be solved by various methods of placing access points, including using UAVs. This approach ensures the efficiency of construction and flexibility of the access network structure, but also requires the use of methods for placing access points in relation to users and other elements of the communication network. Problem statement: development of methods for placing routers in a UAV swarm and selecting traffic routes when organizing an access network, in order to improve the efficiency of the communication network. Purpose of the work: improving the efficiency of building an access network using UAVs through the development of clustering methods and distributing routers in a UAV swarm. Methods. The studies were carried out using the provisions of information theory, mathematical optimization methods, graph theory methods and clustering methods. The numerical results were obtained using the numerical simulation method in Python. Result. The developed model and methods allow for the distribution of network routers (access points) located on UAVs taking into account the quality of service and ensuring the construction of a connected mesh network and its connection with the mobile network, which can be used in both modern and future communication networks. Novelty: a modeling and methodological apparatus has been developed that allows for increasing the efficiency of building wireless access networks using UAVs, in particular, allowing for selecting the placement positions of routers in a UAV swarm and the logical structure of the network. The developed modeling and methodological apparatus solves the problem of traffic routing taking into account the quality of its service. Practical significance: the proposed model and methods can be used to organize service in 5G networks and subsequent generations. In particular, they allow for ensuring the availability of communication and the efficiency of network organization in cases of insufficient coverage, as well as in cases of failure of individual network elements. The ability to unload traffic to a local network allows for improving the quality of traffic service in the operator's network.
Proceedings of Telecommunication Universities. 2024;10(4):62-72
pages 62-72 views

A set of Models for Device Positioning in Sixth Generation Networks. Part 1. Methods Survey and Problem Statement

Fokin G.A.

Abstract

Relevance. Today, terahertz radio systems are considered as a technological basis for integrating methods and means of radio communication and radar in promising sixth-generation networks. If in 4G LTE networks the capabilities of positioning user equipment using the infrastructure of base stations were considered as auxiliary options, then in 5G NR networks, location determination technologies (LDTs) have become full-fledged services, the requirements for which are specified along with communication services. A new trend in positioning in 5G NR networks, compared to 4G LTE networks, has become a single-position assessment of the coordinates and orientation of the user equipment based on signals from a single base station with the ability to distinguish between direct and reflected signals. 6G networks are still in their infancy, but it can already be stated that they mark the next stage in the evolution of digital ecosystems, which is characterized by the convergence of communication technologies, localization and sensing of radio air and the surrounding space by radio engineering means.Purpose. This work opens a research cycle devoted to the review of models, methods and algorithms for positioning devices in 6G networks. The goal of the cycle is to find and justify new radio engineering means for achieving decimeter accuracy in 6G device coordinate estimates. The first part of the cycle provides an overview of the methods and formalization of the model for collecting primary measurements.Method is an analytical review of the state of the problem based on current scientific publications, conceptual modeling, categorical approach, expert combination, comparative analysis, formalization, mathematical and simulation modeling.Results. As a result of the review of device positioning methods during the transition to 6G networks, key performance indicators and LDT scenarios are updated. As a result of the comparative analysis of 5G and 6G networks, new factors, advantages and disadvantages of positioning technologies during the transition from millimeter wave networks to terahertz networks are systematized. A formalized mathematical model for collecting primary measurements is used in the simulation model for assessing the accuracy of device positioning in the second part of the cycle.Novelty. This cycle is the first such study in the Russian scientific segment on network positioning of the sixth generation of the terahertz range, in which the author's version provides an overview of methods and a systematization of a set of new factors of the OMP in communication networks.The theoretical significance of the review-analysis lies in the establishment of both technological obstacles and new opportunities for increasing positioning accuracy during the transition to 6G networks.The practical significance of the formalized mathematical model lies in its subsequent software implementation for numerical justification of the limits of positioning accuracy in 6G networks.
Proceedings of Telecommunication Universities. 2024;10(4):73-98
pages 73-98 views

INFORMATION TECHNOLOGIES AND TELECOMMUNICATION

Energy-Efficient Algorithm for Data Path Selection in High-Density Wireless Sensor Networks

Astakhova T.N., Kolbanev M.O., Lyamin A.S., Maslov N.S., Maslova D.A.

Abstract

Relevance. Increasing the number of sensor devices per unit area consequently reduces the physical distance between the devices in the sensor network. Such networks are usually deployed over a large area and the sensor device that wants to transmit a data packet is located far away from the base station. In such a case, the source device is challenged to choose a transmission path that consumes the least amount of energy resources and satisfies the delivery time requirements. The objective of this study is to develop and validate the effectiveness of an empirical algorithm for selecting a transmission path that reduces the energy consumption of high-density wireless sensor networks. Methods of system analysis, analytical modeling, geometry and probability theories are used. Solution. It is assumed that the sensor network is deployed in a limited area and is a set of devices that are connected to each other informationally and energetically.  When building data transmission routes, any sensor devices can be used as repeaters. At the same time, the increase in the number of repeaters leads to an increase in the time of data delivery. Novelty. It is assumed that the sensor network is deployed in a limited area and is a set of devices that are connected to each other informationally and energetically. Any sensor devices may be used as repeaters when constructing data transmission routes.Significance (theoretical). Dependences of power consumption level on various system parameters affecting the processes of functioning of high-density wireless sensor networks have been obtained. Significance (practical). The proposed empirical algorithm for selecting a rational data transmission route in a wireless sensor network allows us to determine, among all alternatives, the route to the coordinator that requires the least power. The effectiveness of the proposed empirical power-saving algorithm is confirmed by simulation modeling.
Proceedings of Telecommunication Universities. 2024;10(4):100-109
pages 100-109 views

Ensuring Information Security of Information Systems to be Integrated Based on Trust

Gryzunov V.V., Krjukov A.S., Shestakov A.V., Zikratov I.A.

Abstract

Relevance. Information systems are integrated with each other, which leads to the need to ensure the protection of the integrated system. The level of trust requires formalizing the concept of trust and studying its nature and structure.The purpose of the article is to remove the contradiction between the needs to provide access to the resources of the resulting integrated system and ensure compliance with the information security requirements of each of the integrated systems by formulating the concept of trust from the information security perspective. Methods used: systems analysis, risk management theory, resolutions, iSoft operator equation synthesis method.Results. Main shortcomings of existing approaches to the formalization of the concept of “trust” are identified. Based on the FIST information system model, a functional trust structure has been developed and formalized in IDEF0 notation for all levels of integrated information systems: supporting level, personnel level, hardware and software levels. Examples of violation of trust and examples of tools for creating trust for each level of the information system are given. The adequacy of the model is illustrated by the example of real integration of information systems. Application of the proposed trust model made it possible to identify features that increase information security risks for the integrated information system from the example. Novelty. An interpretation of trust as a measure of information security is proposed, in contrast to “risk” as a measure of danger. A tool for quantitative assessment of trust is proposed. A necessary and sufficient condition for creating maximum trust in an information system is formulated and proven by the resolution method Practical significance. The proposed trust model can be used in the development of guidance documents regulating the process of integration of information systems, in setting requirements for service personnel and creating training programs for them, for developing information security tools and methods for their application.
Proceedings of Telecommunication Universities. 2024;10(4):110-125
pages 110-125 views

Advance in Applied Cryptography Theory: Survey and New Results. Part 1. Key Cryptography

Korzhik V.I., Yakovlev V.A., Izotov B.V., Starostin V.S., Buinevich M.V.

Abstract

In the current paper, consisting from two parts, are presented both results already published before (but hard for access) and new once. Actuality of this work is firstly in a fact that recently has been obtained a number of new results in area of applied cryptography that are needed both in a clarification and be put into practice. This is namely the main goal of the current paper. The setting problem in the first paper part concerns to a complexity of symmetric cipher breaking while in the second part of the paper is discussed, so called, keyless cryptography, namely: wiretap channel concept, execution of communication channels which allow to provide information security without of key exchange procedure  between legal correspondences. In the part widely used methods of applied mathematics, namely: algebra, number, probability and information theories. Computer simulation also used there. A novelty of the first part of work consists in the following: first of all it is clarified the sense of a key lifetime limitation for different symmetric cipher modes, secondly, it is explained an approach of cipher breaking by the use of quantum computers, finely, the key authentication for the Diffie ‒ Hellman protocol based on the mobile device pairing technology is investigated in detail. In the second part of the current paper has been presented a vulnerability of Dean ‒ Goldsmith cryptosystem under some extension of attacks. The main results of this paper are: estimation of the key lifetime of single key for symmetric cipher in CBC mode, clarifying of Grover’s algorithm breaking of symmetric ciphers by brute force attack, development of a method for authentication of Diffie ‒ Hellman values based on pre-distributed sequences, selection of ciphers which allow to execute with Shamir’s protocol without any key sharing in advance, breaking of Dean ‒ Goldsmith protocol under some conclusions, proof the fact regarding of a possible breakability of the key sharing protocol over noiseless communication channels. Practical application of paper results consists in the fact of stimulation the correct choice of ciphers and their parameters in order to provide their resistance to different attacks and more attention to algorithms of keyless cryptography.
Proceedings of Telecommunication Universities. 2024;10(4):126-141
pages 126-141 views

Intelligent Method for Mutation of Input Cases with Feedback

Samarin N.N., Tulinova A.V.

Abstract

Relevance. Fuzzing is one of the effective ways to improve the software reliability and is included in the mandatory list of research carried out at the stage of qualification testing according to national standard GOST R 56939-2016. The use of standard mutators reduces the fuzzing process to brute force, which negatively affects the time of incorrect program behavior detection. In this regard, it is important to rationalize the selection of input data, which takes into account the data corpus specifics, as well as the context describing the software response under test and allowing to determine the mutations at the next iteration of testing. Purpose of the research is to increase the efficiency of fuzzing by intellectualizing the standard mutator using neural networks, which takes into account the syntactic and semantic features of the input corpus and uses program feedback.Methods. The methods of analysis and synthesis, theory of algorithms, discrete and computational mathematics, machine learning were used.Result. The advantages and disadvantages of the standard module for AFL fuzzer’s input corpus mutation are considered. The justification of neural network choice with LSTM-architecture as a mechanism that realizes the intelligent control of input corpora’s’ generation and transformation is given. The proposed mutation method is described, which implies the integration of decision making mechanism on the amount and format of necessary mutations to increase the code coverage into the standard mutator, as well as the subsequent refinement of input data by shell-code to check the operability of the fragment that caused abnormal software’s behavior. The scheme of the mutation module is presented, which includes a component of input corporas conversion for generation of program execution traces and a component aimed at concept confirmation and re-call of abnormal software behavior using the generated shell-code.Novelty. Unlike the known ones, the proposed method uses feedback, fixing the software reaction, when forming the data mutation strategy, which determines the scientific novelty of the obtained results.Significance. The proposed solution allows reducing the program testing time while maintaining the code coverage. The results obtained in the research are universal and, in the future, can be used in white, black and gray box fuzzing methods.
Proceedings of Telecommunication Universities. 2024;10(4):142-148
pages 142-148 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies