Model and Methods of Traffic Routing in a Communication Network Using UAVs

Cover Page

Cite item

Full Text

Abstract

Relevance. The development of 5G networks and subsequent generations is accompanied by the development of new services, in particular, virtual, augmented reality services, as well as telepresence, as well as radio access networks. In particular, there is an increase in operating frequencies, which poses additional challenges for organizing a network that can meet the requirements for the quality of traffic service from new services and ensure the availability of communication to users. These problems can be solved by various methods of placing access points, including using UAVs. This approach ensures the efficiency of construction and flexibility of the access network structure, but also requires the use of methods for placing access points in relation to users and other elements of the communication network. Problem statement: development of methods for placing routers in a UAV swarm and selecting traffic routes when organizing an access network, in order to improve the efficiency of the communication network. Purpose of the work: improving the efficiency of building an access network using UAVs through the development of clustering methods and distributing routers in a UAV swarm. Methods. The studies were carried out using the provisions of information theory, mathematical optimization methods, graph theory methods and clustering methods. The numerical results were obtained using the numerical simulation method in Python. Result. The developed model and methods allow for the distribution of network routers (access points) located on UAVs taking into account the quality of service and ensuring the construction of a connected mesh network and its connection with the mobile network, which can be used in both modern and future communication networks. Novelty: a modeling and methodological apparatus has been developed that allows for increasing the efficiency of building wireless access networks using UAVs, in particular, allowing for selecting the placement positions of routers in a UAV swarm and the logical structure of the network. The developed modeling and methodological apparatus solves the problem of traffic routing taking into account the quality of its service. Practical significance: the proposed model and methods can be used to organize service in 5G networks and subsequent generations. In particular, they allow for ensuring the availability of communication and the efficiency of network organization in cases of insufficient coverage, as well as in cases of failure of individual network elements. The ability to unload traffic to a local network allows for improving the quality of traffic service in the operator's network.

About the authors

K. A. Kuznetsov

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: kuznetsov.sut@gmail.com
ORCID iD: 0009-0001-6167-2711
SPIN-code: 9601-1160

A. I. Paramonov

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: paramonov@sut.ru
ORCID iD: 0000-0002-4104-3504
SPIN-code: 6569-4460

A. S.A. Muthanna

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: muthanna.asa@sut.ru
ORCID iD: 0000-0003-0213-8145
SPIN-code: 2214-6441

A. E. Kucheryavy

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: akouch@sut.ru
ORCID iD: 0000-0003-0213-8145
SPIN-code: 1012-4238

References

  1. Taleb T., Benzaïd C., Lopez M.B., Mikhaylov K., Tarkoma S., Kostakos P., et al. 6G System Architecture: A Service of Services Vision // ITU Journal on Future and Evolving Technologies. 2022. Vol. 3. Iss. 3.
  2. Rec. ITU-T Technical Report (01/2020). Network 2030 ‒ Additional Representative Use Cases and Key Network Requirements for Network 2030.
  3. Rec. ITU-T Deliverable (10/2019). New Services and Capabilities for Network 2030: Description, Technical Gap and Performance Target Analysis.
  4. Li R. Network 2030. A Blueprint of Technology, Applications and Market Drivers Towards the Year 2030 and Beyond. 2019.
  5. Rec. ITU-T Technical Specification (06/2020). Network 2030 Architecture Framework.
  6. Волков А.Н., Мутханна А.С.А., Кучерявый А.Е., Бородин А.С., Парамонов А.И., Владимиров С.С. и др. Перспективные исследования сетей и услуг 2030 в лаборатории 6G Meganetlab СПБГУТ // Электросвязь. 2023. № 6. С. 5‒14. doi: 10.34832/ELSV.2023.43.6.001. EDN:CJSYLS
  7. Демидов Н.А. Исследование трафика 3d-видеопотока на имитационной модели // Электросвязь. 2024. № 3. С. 44‒48. doi: 10.34832/ELSV.2024.52.3.008. EDN:DNQCWX
  8. Rec. ITU Focus Group Technical Specification (12/2023). Definition of metaverse.
  9. Mane-Deshmukh P.V. Designing of Wireless Sensor Network to Protect Agricultural Farm from Wild Animals // i-Manager’s Journal on Information Technology. 2018. Vol. 7. Iss. 4. PP. 30‒36.
  10. Shannon C.E., Weaver W. The Mathematical Theory of Communication. Urbana: The University of Illinois Press,·1964.
  11. Akyildiz I.F., Han C., Hu Z., Nie S., Jornet J.M. Terahertz Band Communication: An Old Problem Revisited and Research Directions for the Next Decade // IEEE Transactions on Communications. 2022. Vol. 70. Iss. 6. PP. 4250‒4285. doi: 10.1109/TCOMM.2022.3171800
  12. Petrov V., Pyattaev A., Moltchanov D., Koucheryavy Y. Terahertz band communications: Applications, research challenges, and standardization activities // Proceedings of the 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT, Lisbon, Portugal, 18‒20 October 2016). IEEE, 2016. PP. 183‒190. doi: 10.1109/ICUMT.2016.7765354
  13. results for "5g router" // Amazon. URL: https://www.amazon.com/5g-router/s?k=5g+router (Accessed 01.07.2024)
  14. Дорохова А.А., Парамонов А.И. Исследование трафика и качества обслуживания в самоорганизующихся сетях на базе БПЛА // Информационные технологии и телекоммуникации. 2016. Т. 4. № 2. С. 12‒25. EDN:XDCORF
  15. Варельджян К.С., Парамонов А.И., Киричек Р.В. Оптимизация траектории движения БПЛА в летающих сенсорных сетях // Электросвязь. 2015. № 7. С. 20‒25. EDN:UAYFOL
  16. Захаров М.В., Киричек Р.В., Парамонов А.И. Задача распределения ресурсов в группах БПЛА // Информационные технологии и телекоммуникации. 2015. Т. 3. № 1. С. 62‒70. EDN:TUXWKP
  17. Вишневский В.М. Методы и алгоритмы проектирования и реализации привязных высотных беспилотных телекоммуникационных платформ // XIII Всероссийское совещание по проблемам управления ВСПУ-2019 (Москва, Россия, 17–20 июня 2019 г.). М.: Институт проблем управления им. В.А. Трапезникова РАН, 2019. С. 40‒42. doi: 10.25728/vspu.2019.0040. EDN:KFCQMJ
  18. Факторный, дискриминантный и кластерный анализ. Пер. с англ. М.: Финансы и статистика, 1989. 215 с.
  19. 3. Clustering // Scikit-learn. URL: https://scikit-learn.org/stable/modules/clustering.html (Accessed 01.07.2024)
  20. Марочкина А.В. Моделирование и кластеризация трехмерной сети интернета вещей с применением метода оценки фрактальной размерности // Электросвязь. 2023. № 6. С. 60‒66. doi: 10.34832/ELSV.2023.43.6.008. EDN:ZBNQKI
  21. Загоруйко Н.Г., Ёлкина В.Н., Лбов Г.С. Алгоритмы обнаружения эмпирических закономерностей. Новосибирск: Наука, 1985. 110 с.
  22. Викулов А.С., Парамонов А.И. Модель канала OFDM в задаче оценки эффективности сети IEEE 802.11 // Инфокоммуникационные технологии. 2018. Т. 16. № 3. С. 290‒297. doi: 10.18469/ikt.2018.16.3.06. EDN:EMWAAZ
  23. Рекомендация МСЭ-R P.1238-9 (06/2017). Данные о распространении радиоволн и методы прогнозирования для планирования систем радиосвязи внутри помещений и локальных зоновых радиосетей в частотном диапазоне 300 МГц–100 ГГц.
  24. Daley D.J., Vere-Jones D. An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods. Springer Science & Business Media, 2006. 471 p.
  25. Препарата Ф., Шеймос М. Вычислительная геометрия: Введение. Пер. с англ. М.: Мир, 1989. 478 с.
  26. Майника Э. Алгоритмы оптимизации на сетях и графах. Пер. с англ. М.: Мир. 1981. 323 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».