Асимптотика собственных чисел и функций задачи Дирихле на тонкой пространственной сетке с узелками
- Авторы: Назаров С.А.1
-
Учреждения:
- Институт проблем машиноведения Российской академии наук, г. Санкт-Петербург
- Выпуск: Том 89, № 5 (2025)
- Страницы: 107-164
- Раздел: Статьи
- URL: https://journals.rcsi.science/1607-0046/article/view/331263
- DOI: https://doi.org/10.4213/im9534
- ID: 331263
Цитировать
Аннотация
Библиография: 56 наименований.
Об авторах
Сергей Александрович Назаров
Институт проблем машиноведения Российской академии наук, г. Санкт-Петербург
Email: srgnazarov@yahoo.co.uk; srgnazarov108@gmail.com
ORCID iD: 0000-0002-8552-1264
Scopus Author ID: 35616414800
ResearcherId: N-3503-2015
доктор физико-математических наук, профессор
Список литературы
- P. Exner, H. Kovar̆ik, Quantum waveguides, Theoret. Math. Phys., 22, Springer, Cham, 2015, xxii+382 pp.
- P. G. Ciarlet, Plates and junctions in elastic multi-structures. An asymptotic analysis, Rech. Math. Appl., 14, Masson, Paris; Springer-Verlag, Berlin, 1990, viii+215 pp.
- D. Cioranescu, J. Saint Jean Paulin, Homogenization of reticulated structures, Appl. Math. Sci., 136, Springer-Verlag, New York, 1999, xx+346 pp.
- W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Math. Lehrbucher und Monogr., 82, Akademie-Verlag, Berlin, 1991, 432 pp.
- G. Panasenko, Multi-scale modelling for structures and composites, Springer, Dordrecht, 2005, xiv+398 pp.
- O. Post, Spectral analysis on graph-like spaces, Lecture Notes in Math., 2039, Springer, Heidelberg, 2012, xvi+431 pp.
- G. P. Panasenko, “Asymptotic analysis of bar systems. I”, Russian J. Math. Phys., 2:3 (1994), 325–352
- P. Exner, O. Post, “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115
- D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752
- G. Leugering, S. A. Nazarov, A. S. Slutskij, J. Taskinen, “Asymptotic analysis of a bit brace shaped junction of thin rods”, ZAMM Z. Angew. Math. Mech., 100:1 (2020), e201900227, 11 pp.
- S. A. Nazarov, “The Navier–Stokes problem in thin or long tubes with periodically varying cross-section”, ZAMM Z. Angew. Math. Mech., 80:9 (2000), 591–612
- S. Čanic, A. Mikelic, “Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries”, SIAM J. Appl. Dyn. Syst., 2:3 (2003), 431–463
- G. Panasenko, K. Pileckas, “Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe”, Appl. Anal., 91:3 (2012), 559–574
- D. S. Jones, “The eigenvalues of $nabla^2u+lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Cambridge Philos. Soc., 49:4 (1953), 668–684
- S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559
- K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions”, J. Math. Anal. Appl., 449:1 (2017), 907–925
- D. V. Evans, M. Levitin, D. Vassiliev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31
- F. Rellich, “Über das asymptotische Verhalten der Lösungen von $Delta u+lambda u=0$ in unendlichen Gebieten”, Jahresber. Dtsch. Math.–Ver., 53:1 (1943), 57–65
- P. Exner, P. Šeba, P. Štoviček, “On existence of a bound state in an $L$-shaped waveguide”, Czech J. Phys., 39:11 (1989), 1181–1191
- S. A. Nazarov, A. V. Shanin, “Trapped modes in angular joints of 2D waveguides”, Appl. Anal., 93:3 (2014), 572–582
- M. Dauge, Y. Lafranche, T. Ourmières-Bonafos, “Dirichlet spectrum of the Fichera layer”, Integral Equations Operator Theory, 90:5 (2018), 60, 41 pp.
- M. Vanninathan, “Homogenization of eigenvalue problems in perforated domains”, Proc. Indian Acad. Sci. Math. Sci., 90:3 (1981), 239–271
- T. A. Mel'nyk, “Vibrations of a thick periodic junction with concentrated masses”, Math. Models Methods Appl. Sci., 11:6 (2001), 1001–1027
- S. A. Nazarov, M. E. Perez, “On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary”, Rev. Mat. Complut., 31:1 (2018), 1–62
- W. Kirsch, B. Simon, “Comparison theorems for the gap of Schrödinger operators”, J. Funct. Anal., 75:2 (1987), 396–410
- E. B. Daners, B. Simon, “Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians”, J. Funct. Anal., 59:2 (1984), 335–395
- M. Sh. Birman, T. A. Suslina, “Two-dimensional periodic Pauli operator. The effective masses at the lower edge of the spectrum”, Mathematical results in quantum mechanics (Prague, 1998), Oper. Theory Adv. Appl., 108, Birkhäuser Verlag, Basel, 1999, 13–31
Дополнительные файлы
