Asymptotics of eigenvalues and eigenfunctions of the Dirichlet problem in thin spatial network with nodules
- Autores: Nazarov S.A.1
-
Afiliações:
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg
- Edição: Volume 89, Nº 5 (2025)
- Páginas: 107-164
- Seção: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/331263
- DOI: https://doi.org/10.4213/im9534
- ID: 331263
Citar
Resumo
condition, the low-frequency but situated far away from the coordinate origin range of the
spectrum of the Dirichlet problem is characterized by localization of the corresponding
eigenfunctions near angular joints of ligaments or at the ligaments themselves in accordance with
distribution of eigenvalues in the discrete spectra (surely non-empty) of model problems
in junctions of semi-infinite cylindrical quantum waveguides of various shapes. The behavior of eigenvalues and eigenfunctions in the mid-frequency range of the spectrum depend crucially on
the phenomenon of threshold resonances in the above-mentioned junctions as well as the relation
between small parameters, namely, the period of distribution of the nodules and their diameter,
comparable in order but bigger than diameter of the ligaments. We consider concrete cases
of rectangular and circular cross-sections and formulate open questions.
Sobre autores
Sergei Nazarov
Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg
Email: srgnazarov@yahoo.co.uk; srgnazarov108@gmail.com
ORCID ID: 0000-0002-8552-1264
Scopus Author ID: 35616414800
Researcher ID: N-3503-2015
Doctor of physico-mathematical sciences, Professor
Bibliografia
- P. Exner, H. Kovar̆ik, Quantum waveguides, Theoret. Math. Phys., 22, Springer, Cham, 2015, xxii+382 pp.
- P. G. Ciarlet, Plates and junctions in elastic multi-structures. An asymptotic analysis, Rech. Math. Appl., 14, Masson, Paris; Springer-Verlag, Berlin, 1990, viii+215 pp.
- D. Cioranescu, J. Saint Jean Paulin, Homogenization of reticulated structures, Appl. Math. Sci., 136, Springer-Verlag, New York, 1999, xx+346 pp.
- W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Math. Lehrbucher und Monogr., 82, Akademie-Verlag, Berlin, 1991, 432 pp.
- G. Panasenko, Multi-scale modelling for structures and composites, Springer, Dordrecht, 2005, xiv+398 pp.
- O. Post, Spectral analysis on graph-like spaces, Lecture Notes in Math., 2039, Springer, Heidelberg, 2012, xvi+431 pp.
- G. P. Panasenko, “Asymptotic analysis of bar systems. I”, Russian J. Math. Phys., 2:3 (1994), 325–352
- P. Exner, O. Post, “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115
- D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752
- G. Leugering, S. A. Nazarov, A. S. Slutskij, J. Taskinen, “Asymptotic analysis of a bit brace shaped junction of thin rods”, ZAMM Z. Angew. Math. Mech., 100:1 (2020), e201900227, 11 pp.
- S. A. Nazarov, “The Navier–Stokes problem in thin or long tubes with periodically varying cross-section”, ZAMM Z. Angew. Math. Mech., 80:9 (2000), 591–612
- S. Čanic, A. Mikelic, “Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries”, SIAM J. Appl. Dyn. Syst., 2:3 (2003), 431–463
- G. Panasenko, K. Pileckas, “Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe”, Appl. Anal., 91:3 (2012), 559–574
- D. S. Jones, “The eigenvalues of $nabla^2u+lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Cambridge Philos. Soc., 49:4 (1953), 668–684
- S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559
- K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions”, J. Math. Anal. Appl., 449:1 (2017), 907–925
- D. V. Evans, M. Levitin, D. Vassiliev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31
- F. Rellich, “Über das asymptotische Verhalten der Lösungen von $Delta u+lambda u=0$ in unendlichen Gebieten”, Jahresber. Dtsch. Math.–Ver., 53:1 (1943), 57–65
- P. Exner, P. Šeba, P. Štoviček, “On existence of a bound state in an $L$-shaped waveguide”, Czech J. Phys., 39:11 (1989), 1181–1191
- S. A. Nazarov, A. V. Shanin, “Trapped modes in angular joints of 2D waveguides”, Appl. Anal., 93:3 (2014), 572–582
- M. Dauge, Y. Lafranche, T. Ourmières-Bonafos, “Dirichlet spectrum of the Fichera layer”, Integral Equations Operator Theory, 90:5 (2018), 60, 41 pp.
- M. Vanninathan, “Homogenization of eigenvalue problems in perforated domains”, Proc. Indian Acad. Sci. Math. Sci., 90:3 (1981), 239–271
- T. A. Mel'nyk, “Vibrations of a thick periodic junction with concentrated masses”, Math. Models Methods Appl. Sci., 11:6 (2001), 1001–1027
- S. A. Nazarov, M. E. Perez, “On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary”, Rev. Mat. Complut., 31:1 (2018), 1–62
- W. Kirsch, B. Simon, “Comparison theorems for the gap of Schrödinger operators”, J. Funct. Anal., 75:2 (1987), 396–410
- E. B. Daners, B. Simon, “Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians”, J. Funct. Anal., 59:2 (1984), 335–395
- M. Sh. Birman, T. A. Suslina, “Two-dimensional periodic Pauli operator. The effective masses at the lower edge of the spectrum”, Mathematical results in quantum mechanics (Prague, 1998), Oper. Theory Adv. Appl., 108, Birkhäuser Verlag, Basel, 1999, 13–31
Arquivos suplementares
