On uniquely solvable Fokker–Planck–Kolmogorov equations
- 作者: Bogachev V.I.1,2, Shaposhnikov S.V.1,2
-
隶属关系:
- Lomonosov Moscow State University
- National Research University Higher School of Economics, Moscow
- 期: 卷 89, 编号 5 (2025)
- 页面: 32-53
- 栏目: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/331260
- DOI: https://doi.org/10.4213/im9639
- ID: 331260
如何引用文章
详细
of probability solutions to the Cauchy problem for
Fokker–Planck–Kolmogorov equations on the real line without using Lyapunov
functions. In the multidimensional case, we prove that if
the Fokker–Planck–Kolmogorov equation for an elliptic operator
equation has a unique probability solution for every initial probability
distribution, then there exists a strongly continuous Markov operator semigroup
on the space
We give an answer to the long-standing question about existence of
a sub-Markov semigroup different from the canonical semigroup with
the generator extending
作者简介
Vladimir Bogachev
Lomonosov Moscow State University; National Research University Higher School of Economics, Moscow
Email: vibogach@mail.ru
ORCID iD: 0000-0001-5249-2965
Scopus 作者 ID: 7005751293
Researcher ID: P-6316-2016
Doctor of physico-mathematical sciences, Professor
Stanislav Shaposhnikov
Lomonosov Moscow State University; National Research University Higher School of Economics, Moscow
Email: starticle@mail.ru
ORCID iD: 0000-0002-3281-7061
参考
- E. B. Fabes, C. E. Kenig, “Examples of singular parabolic measures and singular transition probability densities”, Duke Math. J., 48:4 (1981), 845–856
- G. Metafune, D. Pallara, M. Wacker, “Feller semigroups on $mathbf R^N$”, Semigroup Forum, 65:2 (2002), 159–205
- W. Stannat, “(Nonsymmetric) Dirichlet operators on $L^1$: existence, uniqueness and associated Markov processes”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:1 (1999), 99–140
- A. Eberle, Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators, Lecture Notes in Math., 1718, Springer-Verlag, Berlin, 1999, viii+262 pp.
- Haesung Lee, W. Stannat, G. Trutnau, Analytic theory of Itô-stochastic differential equations with non-smooth coefficients, SpringerBriefs Probab. Math. Stat., Springer, Singapore, 2022, xv+126 pp.
- S. Sawyer, “A Fatou theorem for the general one-dimensional parabolic equation”, Indiana Univ. Math. J., 24:5 (1974/75), 451–498
- V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic regularity and essential self-adjointness of Dirichlet operators on $mathbf R^n$”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24:3 (1997), 451–461
- S. Albeverio, V. I. Bogachev, M. Röckner, “Markov uniqueness and Fokker–Planck–Kolmogorov equations”, Dirichlet forms and related topics, Springer Proc. Math. Stat., 394, Springer, Singapore, 2022, 1–21
- G. M. Lieberman, Second order parabolic differential equations, World Sci. Publ., River Edge, NJ, 1996, xii+439 pp.
- V. I. Bogachev, I. I. Malofeev, S. V. Shaposhnikov, “On dependence of solutions to Fokker–Planck–Kolmogorov equations on their coefficients and initial data”, Math. Notes, 116:3 (2024), 421–431
- V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Zvonkin's transform and the regularity of solutions to double divergence form elliptic equations”, Comm. Partial Differential Equations, 48:1 (2023), 119–149
补充文件
