Structural Evolution of Nanoscale Ferroelectric Hf₀.₅Zr₀.₅O₂ Layers as a Result of Their Cyclic Electrical Stimulation
- Authors: Lev L.L.1, Konashuk A.S.2, Khakimov R.R.1, Chernikova A.G.1, Markeev A.M.1, Lebedev A.M.3, Nazin V.G.3, Chumakov R.G.3, Zenkevich A.V.1
-
Affiliations:
- Moscow Institute of Physics and Technology
- St. Petersburg State University
- Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”
- Issue: No 4 (2025)
- Pages: 3–10
- Section: Articles
- URL: https://journals.rcsi.science/1028-0960/article/view/326363
- DOI: https://doi.org/10.31857/S1028096025040011
- EDN: https://elibrary.ru/FBOYZB
- ID: 326363
Cite item
Abstract
Despite the large number of already published articles on the topic of ferroelectric properties of Hf₀.₅Zr₀.₅O₂ (HZO), this material still attracts enormous attention from the scientific community due to its potential for creating competitive non-volatile HZO-based memory devices compatible with modern silicon technology. Among the challenges in developing industrial-scale technology for such devices is the instability of the residual polarization of the ferroelectric during repeated switching by an external electric field. In particular, during the initial stages of such “cycling,” a significant increase in residual polarization is typically observed (the so-called “wake-up” effect), followed—after a certain number of cycles—by its decline (the so-called “fatigue” effect). The question of which processes cause this instability remains under debate. Using a previously developed methodology for analyzing the phase composition of ultrathin HZO layers via the NEXAFS synchrotron radiation method, it has been shown that in capacitors based on TiN/HZO/TiN structures, the “wake-up” effect observed during the first 10⁵ switching cycles can be explained by an increase in the relative content of the polar orthorhombic phase in HZO due to a reduction in the content of the “parasitic” tetragonal phase. The results obtained confirm that an electric field-stimulated structural phase transition in the films is one of the mechanisms explaining the evolution of the functional properties of HZO-based ferroelectric memory elements throughout their service life.
About the authors
L. L. Lev
Moscow Institute of Physics and Technology
Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast, 141701
A. S. Konashuk
St. Petersburg State University
Email: lev.ll@mipt.ru
St. Petersburg, 199034
R. R. Khakimov
Moscow Institute of Physics and Technology
Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast, 141701
A. G. Chernikova
Moscow Institute of Physics and Technology
Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast, 141701
A. M. Markeev
Moscow Institute of Physics and Technology
Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast, 141701
A. M. Lebedev
Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”
Email: lev.ll@mipt.ru
Russian Federation, Moscow, 123182
V. G. Nazin
Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”
Email: lev.ll@mipt.ru
Russian Federation, Moscow, 123182
R. G. Chumakov
Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”
Email: lev.ll@mipt.ru
Russian Federation, Moscow, 123182
A. V. Zenkevich
Moscow Institute of Physics and Technology
Author for correspondence.
Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast, 141701
References
- Robertson J. // Rep. Progress Phys. 2005. V. 69. P. 327. https://doi.org/10.1088/0034-4885/69/2/R02
- Kim S. K., Lee S. W., Han J. H., Lee B., Han S., Hwang C. S. // Adv. Funct. Mater. 2010. V. 20. P. 2989. https://doi.org/10.1002/adfm.201000599
- Böscke T. S., Müller J., Bräuhaus D., Schröder U., Böttger U. // Appl. Phys. Lett. 2011. V. 99. P. 102903. https://doi.org/10.1063/1.3634052
- Mueller S., Mueller J., Singh A., Riedel S., Sundqvist J., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2012. V. 22. P. 2412. https://doi.org/10.1002/adfm.201103119
- Chernikova A. G., Kuzmichev D. S., Negrov D. V., Kozodaev M. G., Polyakov S. N., Markeev A. M. // Appl. Phys. Lett. 2016. V. 108. P. 242905. https://doi.org/10.1063/1.4953787
- Hoffmann M., Schroeder U., Schenk T., Shimizu T., Funakubo H., Sakata O., Pohl D., Drescher M., Adelmann C., Materlik R., Kersch A., Mikolajick T. // J. Appl. Phys. 2015. V. 118. P. 072006. https://doi.org/10.1063/1.4927805
- Müller J., Schröder U., Böscke T. S., Müller I., Böttger U., Wilde L., Sundqvist J., Lemberger M., Kücher P., Mikolajick T., Frey L. // J. Appl. Phys. 2011. V. 110. P. 114113. https://doi.org/10.1063/1.3667205
- Schroeder U., Yurchuk E., Müller J., Martin D., Schenk T., Polakowski P., Adelmann C., Popovici M. I., Kalinin S. V., Mikolajick T. // Jpn. J. Appl. Phys. 2014. V. 53. P. 08LE02. https://doi.org/10.7567/JJAP.53.08LE02
- Müller J., Böscke T. S., Schröder U., Mueller S., Bräuhaus D., Böttger U., Frey L., Mikolajick T. // Nano Lett. 2012. V. 12. P. 4318. https://doi.org/10.1021/nl302049k
- Hyuk Park M., Joon Kim H., Jin Kim Y., Lee W., Moon T., Seong Hwang C. // Appl. Phys. Lett. 2013. V. 102. P. 242905. https://doi.org/10.1063/1.4811483
- Chernikova A., Kozodaev M., Markeev A., Negrov D., Spiridonov M., Zarubin S., Bak O., Buragohain P., Lu H., Suvorova E., Gruverman A., Zenkevich A. // ACS Appl. Mater. Interfaces. 2016. V. 11. P. 7232. https://doi.org/10.1021/acsami.5b11653
- Chouprik A., Zakharchenko S., Spiridonov M., Zarubin S., Chernikova A., Kirtaev R., Buragohain P., Gruverman A., Zenkevich A., Negrov D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8818. https://doi.org/10.1021/acsami.7b17482
- Zarubin S., Suvorova E., Spiridonov M., Negrov D., Chernikova A., Markeev A., Zenkevich A. // Appl. Phys. Lett. 2016. V. 109. P. 192903. https://doi.org/10.1063/1.4966219
- Hwang C. S. // Adv. Electron. Mater. 2015. V. 1. P. 1400056. https://doi.org/10.1002/aelm.201400056
- Kim S. K., Popovici M. // MRS Bull. 2018. V. 43. P. 334. https://doi.org/10.1557/mrs.2018.95
- Pešić M., Fengler F. P. G., Larcher L., Padovani A., Schenk T., Grimley E. D., Sang X., LeBeau J. M., Slesazeck S., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2016. V. 26. P. 4601. https://doi.org/10.1002/adfm.201600590
- Hamouda W., Pancotti A., Lubin C., Tortech L., Richter C., Mikolajick T., Schroeder U., Barrett N. // J. Appl. Phys. 2020. V. 127. P. 064105. https://doi.org/10.1063/1.5128502
- Chouprik A., Negrov D., Tsymbal E., Zenkevich A. // Nanoscale. 2021. V. 13. P. 11635. https://doi.org/10.1039/D1NR01260F
- Koroleva A. A., Chernikova A. G., Zarubin S. S., Korostylev E. V., Khakimov R. R., Zhuk M. Yu., Markeev A. M. // ACS Omega. 2022. V. 7. № 50. P. 47084. https://doi.org/10.1021/acsomega.2c06237
- Colla E. L., Taylor D. V., Tagantsev A. K., Setter N. // Appl. Phys. Lett. 1998. V. 72. № 19. P. 2478. https://doi.org/10.1063/1.121386
- Stöhr J. NEXAFS Spectroscopy. Vol. 25. Springer Berlin Heidelberg, 1992.
- Filatova E. O., Sokolov A. A. // J. Synchrotron Radiat. 2018. V. 25. P. 232. https://doi.org/10.1107/S1600577517016253
- Filatova E. O., Sokolov A. A., Kozhevnikov I. V., Taracheva E. Y., Grunsky O. S., Schaefers F., Braun W. // J. Phys. Condens. Matter. 2009. V. 21. P. 185012. https://doi.org/10.1088/0953-8984/21/18/185012
- Dmitriyeva A. V., Zarubin S. S., Konashuk A. S., Kasatikov S. A., Popov V. V., Zenkevich A. V. // J. Appl. Phys. 2023. V. 133. P. 054103. https://doi.org/10.1063/5.0131893
- Cheema S. S., Kwon D., Shanker N., dos Reis R., Hsu S.-L., Xiao J., Zhang H., Wagner R., Datar A., McCarter M. R., Serrao C. R., Yadav A. K., Karbasian G., Hsu C.-H., Tan A. J., Wang L.-C., Thakare V., Zhang X., Mehta A., Karapetrova E., Chopdekar R. V., Shafer P., Arenholz E., Hu C., Proksch R., Ramesh R., Ciston J., Salahuddin S. // Nature. 2020. V. 580. P. 478. https://doi.org/10.1038/s41586-020-2208-x
- Kozodaev M. G., Chernikova A. G., Korostylev E. V., Park M. H., Khakimov R. R., Hwang C. S., Markeev A. M. // J. Appl. Phys. 2019. V. 125. P. 034101. https://doi.org/10.1063/1.5050700
- Lebedev A. M., Menshikov K. A., Nazin V. G., Stankevich V. G., Tsetlin M. B., Chumakov R. G. // J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 2021. V. 15. P. 1039. https://doi.org/10.1134/S1027451021050335
- Henke B. L., Gullikson E. M., Davis J. C. // Atomic Data and Nuclear Data Tables. 1993. V. 54. № 2. P. 181. https://doi.org/10.1006/adnd.1993.1013
- Vasić R., Consiglio S., Clark R. D., Tapily K., Sallis S., Chen B., Newby Jr. D., Medikonda M., Muthinti G. R., Bersch E., Jordan-Sweet J., Lavoie C., Leusink G. J., Diebold A. C. // J. Appl. Phys. 2013. V. 113. P. 234101. https://doi.org/10.1063/1.4811446
- Jain A., Ong S. P., Hautier G., Chen W., Davidson Richards W., Dacek S., Cholia S., Gunter D., Skinner D., Ceder G., Persson K. A. // APL Mater. 2013. V. 1. P. 011002. https://doi.org/10.1063/1.4812323
- Cho D.-Y., Jung H.-S., Hwang C. S. // Phys. Rev. B. 2010. V. 82. P. 094104. https://doi.org/10.1103/PhysRevB.82.094104
- Martin D., Müller J., Schenk T., Arruda T. M., Kumar A., Strelcov E., Yurchuk E., Müller S., Pohl D., Schröder U., Kalinin S. V., Mikolajick T. // Adv. Mater. 2014. V. 26. P. 8198. https://doi.org/10.1002/adma.201403115
- Lederer M., Abdulazhanov S., Olivo R., Lehninger D., Kämpfe T., Seidel K., Eng L. M. // Sci. Rep. 2021. V. 11. P. 22266. https://doi.org/10.1038/s41598-021-01724-2
- Lomenzo P. D., Takmeel Q., Zhou C., Fancher C. M., Lambers E., Rudawski N. G., Jones J. L., Moghaddam S., Nishida T. // J. Appl. Phys. 2015. V. 117. P. 134105. https://doi.org/10.1063/1.4916715
- Kim H. J., Park M. H., Kim Y. J., Lee Y. H., Moon T., Kim K. D., Hyun S. D., Hwang C. S. // Nanoscale. 2016. V. 8. P. 1383. https://doi.org/10.1039/C5NR05339K
- Grimley E. D., Schenk T., Sang X., Pešić M., Schroeder U., Mikolajick T., LeBeau J. M. // Adv. Electron. Mater. 2016. V. 2. P. 1600173. https://doi.org/10.1002/aelm.201600173
- Pešić M., Fengler F. P. G., Larcher L., Padovani A., Schenk T., Grimley E. D., Sang X., LeBeau J. M., Slesazeck S., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2016. V. 26. P. 4601. https://doi.org/10.1002/adfm.201600590
- Chouprik A., Zakharchenko S., Spiridonov M., Zarubin S., Chernikova A., Kirtaev R., Buragohain P., Gruverman A., Zenkevich A., Negrov D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8818. https://doi.org/10.1021/acsami.7b17482
Supplementary files
