Structural Evolution of Nanoscale Ferroelectric Hf₀.₅Zr₀.₅O₂ Layers as a Result of Their Cyclic Electrical Stimulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Despite the large number of already published articles on the topic of ferroelectric properties of Hf₀.₅Zr₀.₅O₂ (HZO), this material still attracts enormous attention from the scientific community due to its potential for creating competitive non-volatile HZO-based memory devices compatible with modern silicon technology. Among the challenges in developing industrial-scale technology for such devices is the instability of the residual polarization of the ferroelectric during repeated switching by an external electric field. In particular, during the initial stages of such “cycling,” a significant increase in residual polarization is typically observed (the so-called “wake-up” effect), followed—after a certain number of cycles—by its decline (the so-called “fatigue” effect). The question of which processes cause this instability remains under debate. Using a previously developed methodology for analyzing the phase composition of ultrathin HZO layers via the NEXAFS synchrotron radiation method, it has been shown that in capacitors based on TiN/HZO/TiN structures, the “wake-up” effect observed during the first 10⁵ switching cycles can be explained by an increase in the relative content of the polar orthorhombic phase in HZO due to a reduction in the content of the “parasitic” tetragonal phase. The results obtained confirm that an electric field-stimulated structural phase transition in the films is one of the mechanisms explaining the evolution of the functional properties of HZO-based ferroelectric memory elements throughout their service life.

About the authors

L. L. Lev

Moscow Institute of Physics and Technology

Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast, 141701

A. S. Konashuk

St. Petersburg State University

Email: lev.ll@mipt.ru
St. Petersburg, 199034

R. R. Khakimov

Moscow Institute of Physics and Technology

Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast, 141701

A. G. Chernikova

Moscow Institute of Physics and Technology

Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast, 141701

A. M. Markeev

Moscow Institute of Physics and Technology

Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast, 141701

A. M. Lebedev

Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”

Email: lev.ll@mipt.ru
Russian Federation, Moscow, 123182

V. G. Nazin

Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”

Email: lev.ll@mipt.ru
Russian Federation, Moscow, 123182

R. G. Chumakov

Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”

Email: lev.ll@mipt.ru
Russian Federation, Moscow, 123182

A. V. Zenkevich

Moscow Institute of Physics and Technology

Author for correspondence.
Email: lev.ll@mipt.ru
Russian Federation, Dolgoprudny, Moscow oblast, 141701

References

  1. Robertson J. // Rep. Progress Phys. 2005. V. 69. P. 327. https://doi.org/10.1088/0034-4885/69/2/R02
  2. Kim S. K., Lee S. W., Han J. H., Lee B., Han S., Hwang C. S. // Adv. Funct. Mater. 2010. V. 20. P. 2989. https://doi.org/10.1002/adfm.201000599
  3. Böscke T. S., Müller J., Bräuhaus D., Schröder U., Böttger U. // Appl. Phys. Lett. 2011. V. 99. P. 102903. https://doi.org/10.1063/1.3634052
  4. Mueller S., Mueller J., Singh A., Riedel S., Sundqvist J., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2012. V. 22. P. 2412. https://doi.org/10.1002/adfm.201103119
  5. Chernikova A. G., Kuzmichev D. S., Negrov D. V., Kozodaev M. G., Polyakov S. N., Markeev A. M. // Appl. Phys. Lett. 2016. V. 108. P. 242905. https://doi.org/10.1063/1.4953787
  6. Hoffmann M., Schroeder U., Schenk T., Shimizu T., Funakubo H., Sakata O., Pohl D., Drescher M., Adelmann C., Materlik R., Kersch A., Mikolajick T. // J. Appl. Phys. 2015. V. 118. P. 072006. https://doi.org/10.1063/1.4927805
  7. Müller J., Schröder U., Böscke T. S., Müller I., Böttger U., Wilde L., Sundqvist J., Lemberger M., Kücher P., Mikolajick T., Frey L. // J. Appl. Phys. 2011. V. 110. P. 114113. https://doi.org/10.1063/1.3667205
  8. Schroeder U., Yurchuk E., Müller J., Martin D., Schenk T., Polakowski P., Adelmann C., Popovici M. I., Kalinin S. V., Mikolajick T. // Jpn. J. Appl. Phys. 2014. V. 53. P. 08LE02. https://doi.org/10.7567/JJAP.53.08LE02
  9. Müller J., Böscke T. S., Schröder U., Mueller S., Bräuhaus D., Böttger U., Frey L., Mikolajick T. // Nano Lett. 2012. V. 12. P. 4318. https://doi.org/10.1021/nl302049k
  10. Hyuk Park M., Joon Kim H., Jin Kim Y., Lee W., Moon T., Seong Hwang C. // Appl. Phys. Lett. 2013. V. 102. P. 242905. https://doi.org/10.1063/1.4811483
  11. Chernikova A., Kozodaev M., Markeev A., Negrov D., Spiridonov M., Zarubin S., Bak O., Buragohain P., Lu H., Suvorova E., Gruverman A., Zenkevich A. // ACS Appl. Mater. Interfaces. 2016. V. 11. P. 7232. https://doi.org/10.1021/acsami.5b11653
  12. Chouprik A., Zakharchenko S., Spiridonov M., Zarubin S., Chernikova A., Kirtaev R., Buragohain P., Gruverman A., Zenkevich A., Negrov D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8818. https://doi.org/10.1021/acsami.7b17482
  13. Zarubin S., Suvorova E., Spiridonov M., Negrov D., Chernikova A., Markeev A., Zenkevich A. // Appl. Phys. Lett. 2016. V. 109. P. 192903. https://doi.org/10.1063/1.4966219
  14. Hwang C. S. // Adv. Electron. Mater. 2015. V. 1. P. 1400056. https://doi.org/10.1002/aelm.201400056
  15. Kim S. K., Popovici M. // MRS Bull. 2018. V. 43. P. 334. https://doi.org/10.1557/mrs.2018.95
  16. Pešić M., Fengler F. P. G., Larcher L., Padovani A., Schenk T., Grimley E. D., Sang X., LeBeau J. M., Slesazeck S., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2016. V. 26. P. 4601. https://doi.org/10.1002/adfm.201600590
  17. Hamouda W., Pancotti A., Lubin C., Tortech L., Richter C., Mikolajick T., Schroeder U., Barrett N. // J. Appl. Phys. 2020. V. 127. P. 064105. https://doi.org/10.1063/1.5128502
  18. Chouprik A., Negrov D., Tsymbal E., Zenkevich A. // Nanoscale. 2021. V. 13. P. 11635. https://doi.org/10.1039/D1NR01260F
  19. Koroleva A. A., Chernikova A. G., Zarubin S. S., Korostylev E. V., Khakimov R. R., Zhuk M. Yu., Markeev A. M. // ACS Omega. 2022. V. 7. № 50. P. 47084. https://doi.org/10.1021/acsomega.2c06237
  20. Colla E. L., Taylor D. V., Tagantsev A. K., Setter N. // Appl. Phys. Lett. 1998. V. 72. № 19. P. 2478. https://doi.org/10.1063/1.121386
  21. Stöhr J. NEXAFS Spectroscopy. Vol. 25. Springer Berlin Heidelberg, 1992.
  22. Filatova E. O., Sokolov A. A. // J. Synchrotron Radiat. 2018. V. 25. P. 232. https://doi.org/10.1107/S1600577517016253
  23. Filatova E. O., Sokolov A. A., Kozhevnikov I. V., Taracheva E. Y., Grunsky O. S., Schaefers F., Braun W. // J. Phys. Condens. Matter. 2009. V. 21. P. 185012. https://doi.org/10.1088/0953-8984/21/18/185012
  24. Dmitriyeva A. V., Zarubin S. S., Konashuk A. S., Kasatikov S. A., Popov V. V., Zenkevich A. V. // J. Appl. Phys. 2023. V. 133. P. 054103. https://doi.org/10.1063/5.0131893
  25. Cheema S. S., Kwon D., Shanker N., dos Reis R., Hsu S.-L., Xiao J., Zhang H., Wagner R., Datar A., McCarter M. R., Serrao C. R., Yadav A. K., Karbasian G., Hsu C.-H., Tan A. J., Wang L.-C., Thakare V., Zhang X., Mehta A., Karapetrova E., Chopdekar R. V., Shafer P., Arenholz E., Hu C., Proksch R., Ramesh R., Ciston J., Salahuddin S. // Nature. 2020. V. 580. P. 478. https://doi.org/10.1038/s41586-020-2208-x
  26. Kozodaev M. G., Chernikova A. G., Korostylev E. V., Park M. H., Khakimov R. R., Hwang C. S., Markeev A. M. // J. Appl. Phys. 2019. V. 125. P. 034101. https://doi.org/10.1063/1.5050700
  27. Lebedev A. M., Menshikov K. A., Nazin V. G., Stankevich V. G., Tsetlin M. B., Chumakov R. G. // J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 2021. V. 15. P. 1039. https://doi.org/10.1134/S1027451021050335
  28. Henke B. L., Gullikson E. M., Davis J. C. // Atomic Data and Nuclear Data Tables. 1993. V. 54. № 2. P. 181. https://doi.org/10.1006/adnd.1993.1013
  29. Vasić R., Consiglio S., Clark R. D., Tapily K., Sallis S., Chen B., Newby Jr. D., Medikonda M., Muthinti G. R., Bersch E., Jordan-Sweet J., Lavoie C., Leusink G. J., Diebold A. C. // J. Appl. Phys. 2013. V. 113. P. 234101. https://doi.org/10.1063/1.4811446
  30. Jain A., Ong S. P., Hautier G., Chen W., Davidson Richards W., Dacek S., Cholia S., Gunter D., Skinner D., Ceder G., Persson K. A. // APL Mater. 2013. V. 1. P. 011002. https://doi.org/10.1063/1.4812323
  31. Cho D.-Y., Jung H.-S., Hwang C. S. // Phys. Rev. B. 2010. V. 82. P. 094104. https://doi.org/10.1103/PhysRevB.82.094104
  32. Martin D., Müller J., Schenk T., Arruda T. M., Kumar A., Strelcov E., Yurchuk E., Müller S., Pohl D., Schröder U., Kalinin S. V., Mikolajick T. // Adv. Mater. 2014. V. 26. P. 8198. https://doi.org/10.1002/adma.201403115
  33. Lederer M., Abdulazhanov S., Olivo R., Lehninger D., Kämpfe T., Seidel K., Eng L. M. // Sci. Rep. 2021. V. 11. P. 22266. https://doi.org/10.1038/s41598-021-01724-2
  34. Lomenzo P. D., Takmeel Q., Zhou C., Fancher C. M., Lambers E., Rudawski N. G., Jones J. L., Moghaddam S., Nishida T. // J. Appl. Phys. 2015. V. 117. P. 134105. https://doi.org/10.1063/1.4916715
  35. Kim H. J., Park M. H., Kim Y. J., Lee Y. H., Moon T., Kim K. D., Hyun S. D., Hwang C. S. // Nanoscale. 2016. V. 8. P. 1383. https://doi.org/10.1039/C5NR05339K
  36. Grimley E. D., Schenk T., Sang X., Pešić M., Schroeder U., Mikolajick T., LeBeau J. M. // Adv. Electron. Mater. 2016. V. 2. P. 1600173. https://doi.org/10.1002/aelm.201600173
  37. Pešić M., Fengler F. P. G., Larcher L., Padovani A., Schenk T., Grimley E. D., Sang X., LeBeau J. M., Slesazeck S., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2016. V. 26. P. 4601. https://doi.org/10.1002/adfm.201600590
  38. Chouprik A., Zakharchenko S., Spiridonov M., Zarubin S., Chernikova A., Kirtaev R., Buragohain P., Gruverman A., Zenkevich A., Negrov D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8818. https://doi.org/10.1021/acsami.7b17482

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).