Temporary changes in current flow mechanisms in erbium-doped porous silicon

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper discusses the basic mechanisms of conductivity in silicon MIS structures. The object of the study is porous silicon doped with an erbium impurity of an aqueous solution of erbium nitrate Er(NO3)3 • 5H2O by temperature annealing in a diffusion furnace at a temperature of 800°C for 1 hour. Comparative characteristics of the current-voltage and capacitance-voltage dependences are presented, describing the regular changes in the mechanisms of current flow and charge capture in the samples under study. The results of the work qualitatively and quantitatively describe the temporary change in the electrical characteristics of porous silicon, which can be taken into account by technologists for better understanding the mechanisms of current transfer in luminescent structures of porous silicon with erbium ions, as well as in the study and manufacture of light-emitting diodes based on it.

全文:

受限制的访问

作者简介

E. Khamzin

Samara National Research University after Academician S. P. Korolev

编辑信件的主要联系方式.
Email: elkhan.k.khamzin@gmail.com
俄罗斯联邦, Samara

D. Uslin

Samara National Research University after Academician S. P. Korolev

Email: elkhan.k.khamzin@gmail.com
俄罗斯联邦, Samara

参考

  1. Lenshin A.C. Formation and functional properties of nanostructures based on porous silicon // Dissertation for the degree of Doctor of Physical and Mathematical Sciences 01.04.10 — Physics of semiconductors. Voronezh, 2020.
  2. Canham L. Routes of Formation for Porous Silicon. Handbook of Porous Silicon. 2014. P. 3–4.
  3. Latukhina N.V., Nechaev N.A., Khramkov V.A., Volkov A.V., Agafonov A.N. Structures with macroporous silicon for photo-converters on silicon substrate // Thin Films in Optics and Nanoelectronics. Proc. of 18 International Symposium. Kharkov. 2006. V. 2. С. 207–211.
  4. Kimura T., Yokoi A., Horiguchi H., Saito R. Electrochemical Er doping of porous silicon and its room temperature luminescence at ~1.54 gm // Appl. Phys. Lett. 1994. No. 65. P. 983–985.
  5. Penczek J., Chao I-Wen, Smith R.L., Knoesen A., Davis J.E. and Lee H.W. H. Visible to near-infrared emission from a porous silicon device // Proceedings of LEOS.94. Boston, MA, USA. 1994. V. 2. P. 13–14. doi: 10.1109/LEOS.1994.586286.
  6. Vercauteren R., Scheen G., Raskin J.-P., Francis L. A. Porous silicon membranes and their applications: Recent advances, Sensors and Actuators A: Physical. 2021. V. 318. Р. 112486. ISSN0924-4247. https://doi.org/10.1016/j.sna.2020.112486
  7. Johnson C.M., Reece P.J., Conibeer G.J. Theoretical and experimental evaluation of multilayer porous silicon structures for enhanced erbium up-conversion luminescence. Optics (physics.optics), 2012. doi: 10.48550/arXiv.1208.6046.
  8. Karoui А., Kechiantz А. Sensitization of Porous Silicon with Germanium Quantum Dots for Up-Conversion of Low Energy Photons via Intermediate Band for Third Generation Solar Cells // ECS Transactions, IOP science. 2011. V. 41. Nо. 4. doi: 10.1149/1.3628609.
  9. Toledo R.P., Huanca D.R., Oliveira A.F., dos Santos Filho S.G., Salcedo W.J. Electrical and optical characterizations of erbium doped MPS/PANI heterojunctions // Applied Surface Science. 2020. V. 529. doi: 10.1016/j.apsusc.2020.146994.
  10. Karzanova M.V. Luminescence of porous silicon with rare-earth element admixtures Dissertation for the degree of Candidate of Physical and Mathematical Sciences in the field of 01.04.10 — physics of semiconductors Nizhny Novgorod, 2013.
  11. Bondarenko V.P. et al. Luminescence of erbium-doped porous silicon // Tech. Phys. Lett. 23. 1997. Р. 3–4.
  12. Kashkarov P.K. et al. Effective luminescence of erbium ions in silicon systems nanocrystals // OTT. 2004. V. 46. Iss. 1. Р. 105–109.
  13. Yong-Gang Frank Ren. Erbium Doped Silicon as an Optoelectronic Semiconductor // Material Dissertation for the doctorate degree of Department of Materials Science and Engineering in the filed of “Electronic Materials”. Boston: Massachusetts, 1994.
  14. Chyuan-Haur Kao, Hsiang Chen, Yu Tsung Pan, Jing Sing Chiu, Tien-Chang Lu. The characteristics of the high-K Er2O3 (erbium oxide) dielectrics deposited on polycrystalline silicon, Solid State Communications. 2012. V. 152. Iss. 6. P. 504–508. doi: 10.1016/j.ssc. 2011.12.042.
  15. Wu Deqi, Yao Jincheng, Zhao Hongsheng, Chang Aimin1 and Li Feng. Leakage current mechanisms of ultrathin high-k Er2O3 gate dielectric film // IOP science Journal of Semiconductors. V. 30. Nо. 10. doi: 10.1088/1674-4926/30/10/103003.
  16. Acha C. Graphical analysis of current-voltage characteristics in memristive interfaces // Journal of Applied Physics. 2017. V. 121. No. 13. Р. 134502. doi: 10.1063/1.4979723.
  17. Shalimova M.B. and Sachuk N.V. Analysis of elec-trophysical characteristics of bistable MIS structures with samarium and cerium fluorides, Phys. Wave Pro-cesses Radio Syst. 2020. V. 23. No. 1. p. 58–66. https://doi.org/10.18469/1810-3189.2020.23.1.58-66
  18. Fu-Chien Chiu. A Review on Conduction Mechanisms in Dielectric Films // Advances in Materials Science and Engineering. 2014. Article ID578168. 18 p. https://doi.org/10.1155/2014/578168

补充文件

附件文件
动作
1. JATS XML
2. Fig.1.

下载 (1MB)
3. Fig.2.

下载 (202KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##