Сечения процессов рассеяния при электронно-лучевой литографии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрены современные модели, использующиеся для описания процессов упругого, квазиупругого и неупругого рассеяния. Для упругого рассеяния приведены различные формы потенциала электростатического взаимодействия, потенциала обменного взаимодействия и корреляционно-поляризационного потенциала. Для квазиупругих процессов, включающих электрон-фононное и электрон-поляронное рассеяние приведена модель на основе теории диэлектриков и эмпирическая модель. Описание неупругого рассеяния проводится на основе функции потерь энергии, для построения которой используются три различных подхода.

Об авторах

А. Е. Рогожин

Физико-технологический институт имени К.А. Валиева Российской академии наук

Email: sidorov@ftian.ru
Россия, 117218, Москва, Нахимовский проспект, 36, корп. 1

Ф. А. Сидоров

Физико-технологический институт имени К.А. Валиева Российской академии наук

Автор, ответственный за переписку.
Email: sidorov@ftian.ru
Россия, 117218, Москва, Нахимовский проспект, 36, корп. 1

Список литературы

  1. Chang T.H.P. Proximity effect in electron-beam lithography // J. Vac. Sci. Technol. Nov. 1975. V. 12. № 6. P. 1271–1275.
  2. Nilsson B.A. Experimental evaluation method of point spread functions used for proximity effects correction in electron beam lithography // J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2011. V. 29. № 6. P. 06F311.
  3. Greeneich J.S., T. Van Duzer. Model for Exposure of Electron-Sensitive Resists // J. Vac. Sci. Technol. Nov. 1973. V. 10. № 6. P. 1056–1059.
  4. Greeneich J.S., T. Van Duzer. An Exposure Model For Electron-Sensitive Resists // IEEE Trans. Electron Devices. 1974. V. 21. № 5. P. 286–299.
  5. Greeneich J.S. Solubility Rate of Poly-(Methyl Methacrylate), PMMA, Electron-Resist // J. Electrochem. Soc. 1974. V. 121. № 12. P. 1669.
  6. Greeneich J.S. Developer Characteristics of Poly-(Methyl Methacrylate) Electron Resist // J. Electrochem. Soc. 1975. V. 122. № 7. P. 970.
  7. Glezos N. Application of a new analytical technique of electron distribution calculations to the profile simulation of a high sensitivity negative electron-beam resist // J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Nov. 1992. V. 10. № 6. P. 2606.
  8. Schmoranzer H., Reisser M. Spatial energy deposition distribution by a keV-electron beam in resist layers for electron-beam lithography // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 1995. V. 105. № 1–4. P. 35–41.
  9. Paul B.K. An analytical model of the diffusive scattering of low-energy electrons in electron-beam resists // Microelectron. Eng. 1999. V. 49. № 3–4. P. 233–244.
  10. Raptis I., Glezos N., Hatzakis M. Use of the Boltzmann transport equation for the evaluation of energy deposition in the case of electron sensitive resist films over composite substrates // Microelectron. Eng. 1993. V. 21. № 1–4. P. 289–292.
  11. Stepanova M. et al. Simulation of electron beam lithography of nanostructures // J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2010. V. 28. № 6. P. C6C48–C6C57.
  12. Kyser D.F., Viswanathan N.S. Monte Carlo simulation of spatially distributed beams in electron-beam lithography // J. Vac. Sci. Technol. 2002. V. 12. № 6. P. 1305–1308.
  13. Shimizu R., Everhart T.E. A semiempirical stopping-power formula for use in microprobe analysis // Appl. Phys. Lett. 1978. V. 33. № 8. P. 784–786.
  14. Adesida I., Shimizu R., Everhart T.E. A study of electron penetration in solids using a direct Monte Carlo approach // J. Appl. Phys. 1980. V. 51. № 11. P. 5962–5969.
  15. Samoto N., Shimizu R. Theoretical study of the ultimate resolution in electron beam lithography by Monte Carlo simulation, including secondary electron generation: Energy dissipation profile in polymethylmethacrylate // J. Appl. Phys. 1983. V. 54. № 7. P. 3855–3859
  16. Kim S.-H., Ham Y.-M., Lee W., Chun K. New approach of Monte Carlo simulation for low energy electron beam lithography // Microelectron. Eng. 1998. V. 41–42. P. 179–182.
  17. Ivin V.V., Silakov M.V., Vorotnikova N.V., Resnick D.J., Nordquist K.N., Siragusa L. Efficient and robust algorithms for Monte Carlo and e-beam lithography simulation // Microelectron. Eng. 2001. V. 57–58. P. 355–360.
  18. Glezos N., Raptis I. A fast electron beam lithography simulator based on the Boltzmann transport equation // IEEE Trans. Comput. Des. Integr. Circuits Syst., 1996. V. 15. № 1. P. 92–102.
  19. Aktary M., Stepanova M., Dew S.K., Simulation of the spatial distribution and molecular weight of polymethylmethacrylate fragments in electron beam lithography exposures // J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2006.V. 24. № 2. PP. 768–779.
  20. Stepanova M. et al. Simulation of electron beam lithography of nanostructures // J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. Nov. 2010. V. 28. № 6. P. C6C48–C6C57.
  21. Асадов С.М., Мустафаева С.Н., Лукичев В.Ф., Келбалиев К.И. Концентрационные зависимости переноса заряда и кинетика Монте-Карло моделирования роста 2D моно- и нанокристаллов халькогенидов галлия // Микроэлектроника. 2022. V. 51. № 1. P. 48–59.
  22. Пермякова О.О. Рогожин А.Е. Моделирование резистивного переключения в мемристорных структурах на основе оксидов переходных металлов // Микроэлектроника, 2020. Т. 49. № 5. С. 323–333.
  23. Борздов В.М., Борздов А.В., Сперанский Д.С., Вьюрков В.В., Орликовский А.А. Оценка эффективной пороговой энергии межзонной ударной ионизации в глубокосубмикронном кремниевом n-канальном МОП-транзисторе // Микроэлектроника. 2014. Т. 43. № 3. С. 188–192.
  24. Руденко М.К., Мяконьких А.В., Лукичев В.Ф. Моделирование методом Монте-Карло дефектов профиля тренча в процессе глубокого криогенного травления кремния // Микроэлектроника. 2019. Т. 48. № 3. С. 191–200.
  25. Руденко М.К., Мяконьких А.В., Лукичев В.Ф. Численное моделирование криогенного травления: модель с отложенной десорбцией // Микроэлектроника. 2021. Т. 50. № 1. С. 58–67.
  26. Рогожин А.Е., Сидоров Ф.А. Моделирование процессов электронно-лучевой литографии // Микроэлектроника. 2020. Т. 49. № 2. С. 116–132.
  27. Dapor M. Transport of Energetic Electrons in Solids, 2014.V. 257. Cham: Springer International Publishing.
  28. Marrian C.R.K. Modeling of electron elastic and inelastic scattering // J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 1996. V. 14. № 6. P. 3864.
  29. Ding-Ju J., Zhen-Yu T. A Monte Carlo Study of Low-Energy Electron Transport in Liquid Water: Influence of the Rutherford Formula and the Mott Model // Chinese Phys. Lett. 2010. V. 27. № 3. P. 033401.
  30. Dapor M. Elastic scattering calculations for electrons and positrons in solid targets // J. Appl. Phys. 1996. V. 79. № 11. P. 8406–8411.
  31. Mott N.F., Massey H.S.W. The Theory Of Atomic Collisions. Oxford University Press, London, 1949.
  32. Dapor M. Elastic scattering of electrons and positrons by atoms: differential and transport cross section calculations // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. Apr. 1995. V. 95. № 4. P. 470–476.
  33. Czyżewski Z., MacCallum D.O.N., Romig A., Joy D.C. Calculations of Mott scattering cross section // J. Appl. Phys. Oct. 1990. V. 68. № 7. P. 3066–3072.
  34. Gauvin R., Drouin D. A formula to compute total elastic mott cross-sections // Scanning. 1993. V. 15. № 3. P. 140–150.
  35. Salvat F., Jablonski A., Powell C.J. Elsepa-Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules // Comput. Phys. Commun. 2005. V. 165. № 2. P. 157–190.
  36. Thomas L.H. The calculation of atomic fields // Math. Proc. Cambridge Philos. Soc. 1927. V. 23. № 5. P. 542–548.
  37. Fermi E. No Un metodo statistico per la determinazione di alcune priorieta dell’atome // Rend. Accad. Naz. Lincei. 1927. V. 6. P. 602–607.
  38. Bethe H., Jackiw R. Intermediate Quantum Mechanics. New York - Amsterdam: CRC Press, 1986.
  39. Molière G. Theorie der Streuung schneller geladener Teilchen // Zeitschrift für Naturforsch. A. Mar. 1955. V. 10. № 3. P. 177–211.
  40. Thomas L.H. Tables of statistical electron distributions for atoms with degree of ionization zero to four and of the corresponding electrostatic potentials // J. Chem. Phys. 1954. V. 22. № 10. P. 1758–1767.
  41. Bonham E.A., Strand T.G. Analytical expressions for potentials of neutral thomas-fermi-dirac atoms and for the corresponding atomic scattering factors for x rays and electrons // J. Chem. Phys. 1963. V. 39. № 9. P. 2200–2204.
  42. Liberman D., Waber J.T., Cromer D.T. Self-consistent-field dirac-slater wave functions for atoms and ions. I. Comparison with previous calculations // Phys. Rev. 1965. V. 137. № 1. P. A27–A34.
  43. Liberman D.A., Cromer D.T., Waber J.T. Relativistic self-consistent field program for atoms and ions // Comput. Phys. Commun. 1971. V. 2. № 2. P. 107–113.
  44. Salvat F., Martnez J.D., Mayol R., Parellada J. Analytical Dirac-Hartree-Fock-Slater screening function for atoms (Z = 1–92) // Phys. Rev. A. 1987. V. 36. № 2. P. 467–474.
  45. Desclaux J.P. A multiconfiguration relativistic DIRAC-FOCK program // Comput. Phys. Commun. Jan. 1975. V. 9. № 1. P. 31–45.
  46. Fischer C.F., Godefroid M., Brage T., Jönsson P., Gaigalas G. Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions // J. Phys. B At. Mol. Opt. Phys. 2016. V. 49. № 18. P. 1–35.
  47. Yates A.C. Spin Polarization of Low-Energy Electrons Scattered Elastically from Atoms and Molecules // Phys. Rev. Dec. 1968. V. 176. № 1. P. 173–180.
  48. Bransden B.H., McDowell M.R.C., Noble C.J., Scott T. Equivalent exchange potentials in electron scattering // J. Phys. B At. Mol. Phys. Jun. 1976. V. 9. № 8. P. 1301–1317.
  49. Slater J.C. A simplification of the Hartree-Fock method // Phys. Rev. V. 81. № 3. P. 385–390. 1951.
  50. Riley M.E., Truhlar D.G. Approximations for the exchange potential in electron scattering // J. Chem. Phys. 1975. V. 63. № 5. P. 2182–2191.
  51. Karnakov B.M., Krainov V.P. WKB Approximation in Atomic Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
  52. Furness J.B., McCarthy I.E. Semiphenomenological optical model for electron scattering on atoms // J. Phys. B At. Mol. Phys. Nov. 1973. V. 6. № 11. P. 2280–2291.
  53. Salvat F. Optical-model potential for electron and positron elastic scattering by atoms // Phys. Rev. A – At. Mol. Opt. Phys. 2003.V. 68. № 1. P. 17.
  54. Weast R.C., Handbook of chemistry and physics, 49th ed // Am. J. Med. Sci. 1969. V. 257. № 6. P. 423.
  55. Perdew J.P., Wang Y., Erratum: Accurate and simple analytic representation of the electron-gas correlation energy (Physical Review B (1992) 45 (13244) // Phys. Rev. B. 2018. V. 98. № 7. P. 244–249. https://doi.org/10.1103/PhysRevB.45.13244
  56. Salvat F., Jablonski A., Powell C.J. Elsepa—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules // Comput. Phys. Commun. Jan. 2005. V. 165. № 2. P. 157–190.
  57. Tan Z., Xia Y., Liu X., Zhao M. Monte-Carlo simulation of low-energy electron scattering in PMMA – Using stopping powers from dielectric formalism // Microelectron. Eng., 2005. V. 77. № 3–4. P. 285–291.
  58. Wang F., Li D.-J., Li X.-J., Cui W.-Z., Hu T.-C., Cao M. Modelling energy deposition in polymethyl methacrylate with low-energy electron irradiation // Micron. 2022.V. 156. P. 103232.
  59. Lee Y., Lee W., Chun K., Kim H. New three dimensional simulator for low energy (∼1 keV) electron beam systems // J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2002.V. 17. № 6. P. 2903.
  60. Ciappa M. Monte Carlo modeling in the low-energy domain of the secondary electron emission of polymethylmethacrylate for critical-dimension scanning electron microscopy // J. Micro/Nanolithography, MEMS, MOEMS. 2010.V. 9. № 2. P. 023001.
  61. Tanuma S., Powell C.J., Penn D.R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range // Surf. Interface Anal. 1994. V. 21. № 3. P. 165–176.
  62. Roberts R.F., Allara D.L., Pryde C.A., Buchanan D.N.E., Hobbins N.D. Mean free path for inelastic scattering of 1.2 kev electrons in thin poly(methylmethacrylate) films // Surf. Interface Anal. 1980. V. 2. № 1. P. 5–10.
  63. Tahir D.and Sari N.H. Stopping powers and inelastic mean free path of 200 eV–50 keV electrons in polymer PMMA, PE, and PVC // Appl. Radiat. Isot. 2015. V. 95. P. 59–62.
  64. Tan Z., Xia Y., Liu X., Zhao M., Zhang L. A new calculation on the stopping power and mean free path for low energy electrons in toluene over energy range of 20–10 000 eV // Appl. Radiat. Isot. 2009. V. 67. № 4. P. 625–629.
  65. Fröhlich H. Electrons in lattice fields // Adv. Phys., Jul. 1954. V. 3. № 11. P. 325–361.
  66. Llacer J., Garwin E.L. Electron-Phonon Interaction in Alkali Halides. I. The Transport of Secondary Electrons with Energies between 0.25 and 7.5 eV // J. Appl. Phys. Jun. 1969. V. 40. № 7. P. 2766–2775.
  67. Ganachaud J.P., Mokrani A. Theoretical study of the secondary electron emission of insulating targets // Surf. Sci. Jul. 1995. V. 334. № 1–3. P. 329–341.
  68. Dapor M. Secondary electron emission yield calculation performed using two different Monte Carlo strategies // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. Jul. 2011. V. 269. № 14. P. 1668–1671.
  69. Dapor M. Role of the tail of high-energy secondary electrons in the Monte Carlo evaluation of the fraction of electrons backscattered from polymethylmethacrylate // Appl. Surf. Sci. Jan. 2017. V. 391. P. 3–11.
  70. Bethe H. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie // Ann. Phys. 1930. V. 397. № 3. P. 325–400.
  71. Bethe J., Ashkin H. Experimental Nuclear Physics. New York: Wiley, 1953.
  72. Rogozhin A.E., Sidorov F.A. E-Beam Lithography Simulation Techniques // Russ. Microelectron. Mar. 2020. V. 49. № 2. P. 108–122.
  73. Lindhard J. On the properites of a gas of charged particles // Kgl. Danske Vidensk. Selsk. Mat-fys. Medd. 1954. V. 28. P. 8.
  74. Ritchie R.H. Interaction of Charged Particles with a Degenerate Fermi-Dirac Electron Gas // Phys. Rev., May 1959. V. 114. № 3. P. 644–654.
  75. Dapor M. Energy loss of fast electrons impinging upon polymethylmethacrylate // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 2015. V. 352. P. 190–194.
  76. Palik E.D. Handbook of Optical Constants of Solids. USA: Academic Press, 1998.
  77. Ritsko J.J., Brillson L.J., Bigelow R.W., Fabish T.J. Electron energy loss spectroscopy and the optical properties of polymethylmethacrylate from 1 to 300 eV // J. Chem. Phys. 1978. V. 69. № 9. P. 3931–3939.
  78. Henke B.L., Gullikson E.M., Davis J.C. X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30 000 eV, Z = 1–92 // At. Data Nucl. Data Tables. Jul. 1993. V. 54. № 2. P. 181–342.
  79. Henke B.L., Lee P., Tanaka T.J., Shimabukuro R.L., Fujikawa B.K. Low-energy x-ray interaction coefficients: Photoabsorption, scattering, and reflection // At. Data Nucl. Data Tables. Jan. 1982. V. 27. № 1. P. 1–144.
  80. Biggs F., Lighthill R. Analytical Approximations for X‑Ray Cross Sections III // Natl. Tech. Inf. Serv. 1988.
  81. Fano U., Cooper J.W. Spectral distribution of atomic oscillator strengths // Rev. Mod. Phys. 1968. V. 40. № 3. P. 441–507.
  82. Ashley J.C. Simple model for electron inelastic mean free paths: Application to condensed organic materials // J. Electron Spectros. Relat. Phenomena, Jan. 1982. V. 28. № 2. P. 177–194.
  83. Ashley J.C. Energy loss rate and inelastic mean free path of low-energy electrons and positrons in condensed matter // J. Electron Spectros. Relat. Phenomena. Jan. 1990. V. 50. № 2. P. 323–334.
  84. Ritchie R.H., Howie A. Electron excitation and the optical potential in electron microscopy // Philos. Mag. 1977. V. 36. № 2. P. 463–481.
  85. Akkerman A., Boutboul T., Breskin A., Chechik R., Gibrekhterman A., Lifshitz Y. Inelastic Electron Interactions in the Energy Range 50 eV to 10 keV in Insulators: Alkali Halides and Metal Oxides // Phys. Status Solidi. Dec. 1996. V. 198. № 2. P. 769–784.
  86. Valentin A., Raine M., Sauvestre J.E. Inelastic cross-sections of low-energy electrons in silicon for the simulation of heavy ion tracks with the GEANT4-DNA toolkit // 2010. № 2. P. 80–85.
  87. Valentin A., Raine M., Sauvestre J.E., Gaillardin M., Paillet P. Geant4 physics processes for microdosimetry simulation: Very low energy electromagnetic models for electrons in silicon // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 2012. V. 288. P. 66–73.
  88. MerminN.D. Lindhard Dielectric Function in the Relaxation-Time Approximation // Phys. Rev. B. Mar. 1970. V. 1. № 5. P. 2362–2363.
  89. Dapor M. Mermin Differential Inverse Inelastic Mean Free Path of Electrons in Polymethylmethacrylate // Front. Mater. 2015. V. 2. № April. P. 10–12.
  90. Vera P.De, Abril I., Garcia-Molina R. Inelastic scattering of electron and light ion beams in organic polymers // J. Appl. Phys., 2011. V. 109. № 9.

Дополнительные файлы


© А.Е. Рогожин, Ф.А. Сидоров, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах