Concentration of Fluorine Atoms and Kinetics of Reactive-Ion Etching of Silicon in CF4 + O2, CHF3 + O2, and C4F8 + O2 Mixtures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comparative study of the electrophysical parameters of the plasma, the fluorine atom concentra-tions, and the kinetics of reactive-ion etching of silicon in CF4 + O2, CHF3 + O2, and C4F8 + O2 mixtures of a variable (0–75% O2) initial composition is carried out. It is shown that the dominant etching mecha-nism is always the ion-stimulated chemical reaction Si + xF → SiFx, whose rate has a maximum in the region of 20–50% O2. Based on the results of plasma diagnostics, it is found that the similar behavior of the concen-tration of fluorine atoms is typical only for mixtures of CF4 + O2 and CHF3 + O2, while in the C4F8 + O2 mix-ture, there is a nonmonotonic change in the probability of the interaction. It is assumed that the latter effect is caused by the competition between the processes of reducing the thickness of the fluorocarbon polymer film and the oxidation of the silicon surface by oxygen atoms.

About the authors

A. M. Efremov

Ivanovo State University of Chemistry and Technology; Valiev Institute of Physics and Technology, Russian Academy of Sciences

Email: amefremov@mail.ru
Ivanovo, 153000 Russia; Moscow, 117218 Russia

A. V. Bobylev

Ivanovo State University of Chemistry and Technology

Email: amefremov@mail.ru
Ivanovo, 153000 Russia

K.-H. Kwon

Korea University

Author for correspondence.
Email: amefremov@mail.ru
South Korea, 339-700, Sejong

References

  1. Roosmalen J., Baggerman J.A.G., H. Brader S.J. Dry etching for VLSI. N.Y.: Plenum Press, 1991.
  2. Wolf S., Tauber R.N. Silicon Processing for the VLSI Era. V. 1. Process Technology. N.Y.: Lattice Press, 2000.
  3. Nojiri K. Dry etching technology for semiconductors. Tokyo: Springer International Publishing, 2015.
  4. Lieberman M.A., Lichtenberg A.J. Principles of plasma discharges and materials processing. N.Y.: John Wiley & Sons Inc., 1994.
  5. Stoffels W.W., Stoffels E., Tachibana K. Polymerization of fluorocarbons in reactive ion etching plasmas // J. Vac. Sci. Tech. A. 1998. V. 16. P. 87–95.
  6. Kay E., Coburn J., Dilks A. Plasma chemistry of fluorocarbons as related to plasma etching and plasma polymerization. In: Veprek S., Venugopalan M. (eds) Plasma Chemistry III. Topics in Current Chemistry. V. 94. Berlin, Heidelberg: Springer, 1980.
  7. Standaert T.E.F.M., Hedlund C., Joseph E.A., Oehrlein G.S., Dalton T.J. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide // J. Vac. Sci. Technol. A. 2004. V. 22. P. 53–60.
  8. Schaepkens M., Standaert T.E.F.M., Rueger N.R., Sebel P.G.M., Oehrlein G.S., Cook J.M. Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism // J. Vac. Sci. Technol. A. 1999. V. 17. P. 26–37.
  9. Kimura T., Noto M. Experimental study and global model of inductively coupled CF4/O2 discharges // J. Appl. Phys. 2006. V. 100. P. 063303 (1–9).
  10. Plumb I.C., Ryan K.R. A model of the chemical processes occurring in CF4/O2 discharges used in plasma etching // Plasma Chem. Plasma Process. 1986. V. 6. P. 205–230.
  11. Efremov A., Lee J., Kim J. On the Control of Plasma Parameters and Active Species Kinetics in CF4 + O2 + Ar Gas Mixture by CF4/O2 and O2/Ar Mixing Ratios // Plasma Chem. Plasma Process. 2017. V. 37. P. 1445–1462.
  12. Mogab C., Adams A., Flamm D. Plasma Etching of Si and SiO2 – The Effect of Oxygen Additions to CF4 Plasmas // J. Appl. Phys. 1978. V. 49. P. 3796–3803.
  13. Efremov A.M., Murin D.B., Kwon K.-H. Concerning the Effect of Type of Fluorocarbon Gas on the Output Characteristics of the Reactive-Ion Etching Process // Russian Microelectronics. 2020. V. 49. № 3. P. 157–165.
  14. Efremov A.M., Murin D.B., Kwon K.-H. Features of the Kinetics of Bulk and Heterogeneous Processes in CHF3 + Ar and C4F8 + Ar Plasma Mixtures // Russian Microelectronics. 2019. V. 48. № 2. P. 119–127.
  15. Kokkoris G., Goodyear A., Cooke M., Gogolides E. A global model for C4F8 plasmas coupling gas phase and wall surface reaction kinetics // J. Phys. D. Appl. Phys. 2008. V. 41. P. 195211 (1–12).
  16. Rauf S., Ventzek P.L. Model for an inductively coupled Ar/c-C4F8 plasma discharge // J. Vac. Sci. Technol. A. 2002. V. 20. P. 14–23.
  17. Proshina O., Rakhimova T.V., Zotovich A., Lopaev D.V., Zyryanov S.M., Rakhimov A.T. Multifold study of volume plasma chemistry in Ar/CF4 and Ar/CHF3 CCP discharges // Plasma Sources Sci. Technol. 2017. V. 26. P. 075005.
  18. Li X., Ling L., Hua X., Fukasawa M., Oehrlein G.S., Barela M., Anderson H.M. Effects of Ar and O2 additives on SiO2 etching in C4F8-based plasmas // J. Vac. Sci. Technol. A. 2003. V. 21. P. 284–293.
  19. Lim N., Efremov A., Kwon K.-H. A comparison of CF4, CHF3 and C4F8 + Ar/O2 Inductively Coupled Plasmas for Dry Etching Applications // Plasma Chem. Plasma Process. 2021. V. 41. P. 1671–1689.
  20. Efremov A., Lee B.J., Kwon K.-H. On relationships between gas-phase chemistry and reactive-ion etching kinetics for silicon-based thin films (SiC, SiO2 and SixNy) in multi-component fluorocarbon gas mixtures // Materials. 2021. V. 14. P. 1432(1–27).
  21. Lee B.J., Efremov A., Nam Y., Kwon K.-H. Plasma parameters and silicon etching kinetics in C4F8 + O2 + Ar gas mixture: Effect of component mixing ratios // Plasma Chem. Plasma Process. 2020. V. 40. P. 1365–1380.
  22. Shun’ko E.V. Langmuir Probe in Theory and Practice, Boca Raton: Universal Publishers, 2008.
  23. Lopaev D.V., Volynets A.V., Zyryanov S.M., Zotovich A.I., Rakhimov A.T. Actinometry of O, N and F atoms // J. Phys. D: Appl. Phys, 2017. V. 50. P. 075202(1–17).
  24. Cunge G., Ramos R., Vempaire D., Touzeau M., Neijbauer M., Sadeghi N. Gas temperature measurement in CF4, SF6, O2, Cl2, and HBr inductively coupled plasmas // J. Vac. Sci. Technol. A. 2009. V. 27. №. 3. P. 471–478.
  25. Coburn J.W. Plasma etching and reactive ion etching. N.Y.: AVS Monograph Series, 1982.
  26. Derkach V.P., Bagrii I.P., Chechko G.A. Modeling of plasma etching in microelectronics // Cybern. Syst. Anal. 1990. V. 26. P. 653–663.
  27. Gray D.C., Tepermeister I., Sawin H.H. Phenomenological modeling of ion-enhanced surface kinetics in fluorine-based plasma-etching // J. Vac. Sci. Technol. B. 1993. V. 11. P. 1243–1257.
  28. Efremov A., Son H.J., Choi G., Kwon K.-H. On Mechanisms Influencing Etching/Polymerization Balance in Multi-Component Fluorocarbon Gas Mixtures // Vacuum. 2022. V. 206. P. 111518(1–10).
  29. Seah M.P., Nunney T.S. Sputtering yields of compounds using argon ions // J. Phys. D: Appl. Phys. 2010. V. 43. № 25. P. 253001(1–24).
  30. Efremov A., Bashmakova D., Kwon K.-H. Features of plasma composition and fluorine atom kinetics in CHF3 + O2 gas mixture // ChemChemTech. 2023. V. 66. № 1. P. 48–55.
  31. d’Agostino R., Flamm D.L. Plasma etching of Si and SiO2 in SF6–O2 mixtures // J. Appl. Phys. 1981. V. 52. P. 162–167.
  32. Knizikevicius R. Simulations of Si and SiO2 Etching in SF6 + O2 Plasma // Acta Physica Polonica A. 2010. V. 117. № 3. P. 478–483.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (198KB)
3.

Download (126KB)

Copyright (c) 2023 А.М. Ефремов, А.В. Бобылев, K.-H. Kwon

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies