Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 60, № 3 (2024)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Статьи

Использование прекурсоров для изготовления композитного материала на основе диоксида циркония, допированного 8 мол. % оксида иттрия (8YSZ), и NiO для анод-поддерживаемых ТОТЭ

Агаркова Е.А., Бурмистров И.Н., Яловенко Д.В., Задорожная О.Ю., Непочатов Ю.К., Работкин С.В., Соловьев А.А., Бредихин С.И.

Аннотация

В настоящей работе выполнена направленная оптимизация технологии изготовления двухслойных поддерживающих анодных подложек для планарных твердооксидных топливных элементов с использованием прекурсоров. Двухслойные поддерживающие анодные подложки для планарных ТОТЭ второго поколения были изготовлены методом литья на движущуюся ленту с последующим ламинированием. С целью приготовления композитного материала для токосъемного слоя, содержащего 60 об. % NiO, и функционального слоя, содержащего 40 об. % NiO (выбраны значения, близкие к первому и второму перколяционным порогам), использовали семиводный сульфат никеля NiSO4∙7H2O. Композитную смесь 8YSZ/NiSO4 прокаливали при температуре 1000°С. Использование указанного прекурсора привело к получению прочной анодной подложки, сохраняющей механическую стабильность при окислительно-восстановительных циклированиях. Мелкая дисперсность NiO в тонком функциональном слое привела к высокой плотности трехфазных границ, что положительно повлияло на электрохимическую активность анода. На основе поддерживающих анодных подложек были изготовлены модельные образцы твердооксидных топливных элементов, которые были исследованы с помощью стандартных электрохимических методик. Удельная мощность при рабочей температуре 750°С составила 1 Вт/см2.

Электрохимия. 2024;60(3):167-173
pages 167-173 views

Формирование с использованием струйной 3D-печати анода твeрдооксидного топливного элемента на основе композиций NiO-Ce0.8Gd0.2O2 и исследование его микроструктуры

Асмедьянова А.Д., Багишев А.С., Логутенко О.А., Титков А.И.

Аннотация

Разработан состав пасты для струйной 3D-печати на основе композита NiO-Ce0.8Gd0.2O2 и изготовлена анодная заготовка твердооксидного топливного элемента планарной геометрии с применением метода прямой струйной 3D-печати. Исследовано влияние режима печати и термического отжига на морфологические и структурные характеристики образцов. Проведено восстановление анодной заготовки; полученный образец охарактеризован рядом физико-химических методов.

Электрохимия. 2024;60(3):174-181
pages 174-181 views

Диффузионные никель-кобальтовые покрытия для защиты токовых коллекторов твердооксидных электролизных элементов из стали Crofer 22 APU

Пикалов О.В., Деменева Н.В., Зверькова И.И., Бредихин С.И.

Аннотация

Изучена эволюция микроструктуры и состава Ni-Co-покрытий для защиты токовых коллекторов из нержавеющей хромистой стали Crofer 22 APU от окисления в рабочем режиме анодной камеры твердооксидных электролизных элементов (ТОЭлЭ). Показано, что за счет взаимной диффузии компонентов стали и покрытия, а также окислительно-восстановительных реакций, протекающих под покрытием в рабочем режиме ТОЭлЭ, блокируется диффузия хрома к поверхности токового коллектора. В процессе работы в воздушной атмосфере анодной камеры состав защитного покрытия меняется с металлического Ni-Co на смесь высокопроводящих оксидов (Fe,Ni,Co)3O4 и (Ni,Co), что приводит к изменению вида временной зависимости удельного поверхностного сопротивления перехода токовый коллектор-анод. В то же время полученные значения ~17 мОм см2 в течение испытаний 7000 ч являются достаточно низкими и данные покрытия могут быть использованы для защиты токовых коллекторов из нержавеющих хромистых сталей ТОЭлЭ от окисления.

Электрохимия. 2024;60(3):182-190
pages 182-190 views

Анализ характеристик батареи топливных элементов с протонообменной мембраной: влияние температуры окружающей среды

Фаддеев Н.А., Васюков И.В., Беличенко М.А., Серик А.В., Смирнова Н.В.

Аннотация

Рассмотрена модель мембранно-электродного блока, учитывающая влияние различных климатических условий на удельные мощностные характеристики. Продемонстрирован анализ разработанной модели в сравнении с батареей топливных элементов с протонообменной мембраной (ПОМТЭ), работающей при различных температурах окружающей среды. Показано расхождение полученных данных (менее 10%) между моделью и экспериментом в диапазоне температур от −10 до +10°С. Оптимальная температура окружающей среды для работы батареи составила 10°C. Снижение удельной мощности при повышении температуры на каждые 10°C выше нуля составило 0.006–0.008 Вт/см2, что является несущественным изменением и может быть компенсировано за счет использования буферного накопителя энергии.

Электрохимия. 2024;60(3):191–197
pages 191–197 views

Изучение особенностей формирования наночастиц Pt(0) на поверхности пеноникеля в условиях ионного наслаивания и их электрокаталитических свойств в реакции выделения водорода при электролизе воды в щелочной среде

Канева М.В., Гулина Л.Б., Толстой В.П.

Аннотация

В статье изучены особенности формирования на поверхности никеля наночастиц Pt(0) в составе композитов с нанолистами Co(OH)2. Их синтез выполняли методом ионного наслаивания (ИН), и реагентами для него служили растворы Na2PtCl6, CoCl2 и NaBH4. При использовании растворов Na2PtCl6 и NaBH4 на поверхности никеля получали наночастицы Pt(0), а растворов CoCl2 и NaBH4 – нанолисты Co(OH)2. Структурно-химические исследования синтезированных образцов были выполнены методами просвечивающей электронной микроскопии (ПЭМ), сканирующей электронной микроскопии (СЭМ), рентгеноспектрального микроанализа (РСМА), электронографии, рентгенофотоэлектронной спектроскопии (РФЭС), ИК-Фурье-спектроскопии диффузного отражения (ДО) и спектроскопии комбинационного рассеяния (КР). Основное внимание в работе уделено особенностям формирования наночастиц Pt(0) на поверхности никеля на которую предварительно был нанесен слой Co(OH)2. Изучение электрокаталитических свойств таких образцов в реакции выделения водорода при электролизе воды в щелочной области показало, что наилучшими свойствами обладают наночастицы, синтезированные после 20–40 циклов ИН, причем те из них, которые были получены на подложках никеля с предварительно нанесенными на них слоями Co(OH)2. В свою очередь было установлено, что среди данных образцов наилучшие свойства проявляют те, которые содержат слои Co(OH)2, синтезированные в результате 5 циклов ИН. Один из лучших образцов этой серии был получен в результате 40 циклов ИН и характеризуется значением перенапряжения при токе 10 мА/см2 на уровне 29 мВ, значением наклона Тафеля 29.5 мВ/дек и высокой стабильностью данных значений при многократном циклировании потенциала. Отмечается, что у данного образца наночастицы Pt(0) имеют размеры 4–8 нм и располагаются на поверхности нанолистов на расстоянии примерно 5–10 нм друг от друга. Данные особенности способствуют образованию множества точек контакта наночастиц Pt(0) с поверхностью нанолистов Co(OH)2, и это определяет высокую электрокаталитическую активность и стабильность свойств таких структур.

Электрохимия. 2024;60(3):198–209
pages 198–209 views

Влияние природы порообразователей на микроструктуру анода ТОТЭ на основе NiO и 10YSZ, сформированного гибридной 3D-печатью

Мальбахова И.А., Багишев А.С., Воробьев А.М., Борисенко Т.А., Титков А.И.

Аннотация

В данной работе были послойно сформированы аноды на основе оксида никеля и оксида циркония, допированного оксидом иттрия, методом гибридной струйной 3D-печати с лазерной обработкой. Был определен гранулометрический состав композита NiO/Zr0.9Y0.1O2 (10YSZ) и реологические характеристики печатных паст на его основе. Проведены эксперименты по печати трехмерных тестовых объектов с использованием разработанной керамической пасты. Было изучено влияние дополнительно введенных в состав порообразователей – графита и картофельного крахмала – на реологические характеристики пасты. Полученные образцы несущих анодов были изучены комплексом физико-химических методов для определения морфологических и структурных характеристик.

Электрохимия. 2024;60(3):210-220
pages 210-220 views

Магнетронная технология изготовления электродов электролизеров с протонообменной мембраной

Нефедкин С.И., Рябухин А.В., Елецких В.Е., Болдин Р.Г., Михневич В.Д., Климова М.А.

Аннотация

Представлены результаты разработки и исследования катализаторов анода электролизеров разложения воды с протонообменной мембраной. Для нанесения каталитических слоев на титановый носитель использован магнетронный метод распыления композитных мишеней в вакууме. В качестве основного катализатора использовался иридий и рутений, а в качестве функциональных добавок молибден, хром, титан. Изучены электрохимические и структурные характеристики каталитических покрытий. Методами вольт-амперометрии получены циклические вольт-амперные и анодные характеристики каталитических композиций, в том числе при различных температурах последующей термообработки на воздухе, а также различных температурах измерений. Определены тафелевские наклоны вольт-амперных характеристик композитных анодов, а также токи при потенциале 1.55 В (ОВЭ). Показано, что минимальные наклоны получены для каталитической композиции Ir–Ru–Mo–Ti (b = 40–63 мВ/дек), а максимальные токи для каталитической композиции Ir–Mo–Cr (i = 100–110 мА/см2 при E = 1.55 В (ОВЭ)). Показано, что величина адсорбционных токов ЦВА в анодной области потенциалов коррелирует с коэффициентом b уравнения Тафеля E–lg i и определяет количество каталитических центров для стадии депротонизации реакции выделения кислорода (РВК). Однако активность катализатора в РВК определяется не только количеством таких центров, а в основном функциональными особенностями самого катализатора, т.е. составом катализатора и условиями его получения (в том числе температурой последующей термообработки катализатора на воздухе). Более высокую активность в РВК имеют каталитические композиции на основе иридия с добавками молибдена и хрома. Структурные исследования показали, что при магнетронном распылении композитных мишеней даже при небольших закладках катализатора формируются дисперсные структуры, которые на реальных пористых титановых анодах должны формироваться на фронтальной поверхности с более высоким содержанием катализатора.

Электрохимия. 2024;60(3):221-234
pages 221-234 views

Изучение высокотемпературного выделения кислорода из сложного оксида LA2NiO4+δ в квазиравновесном режиме

Тропин Е.С., Попов М.П., Гуськов Р.Д., Немудрый А.П.

Аннотация

Методом квазиравновесного выделения кислорода получена непрерывная фазовая диаграмма δ (pO2, T) нестехиометрического оксида La2NiO4+δ со слоистой перовскитоподобной структурой Раддлесдена-Поппера. Определены термодинамические параметры как функции нестехиометрии оксида δ. Проведен расчет в рамках моделей локализованного электрона и свободного электрона, которые применяются для описания дефектной структуры ферритов и кобальтитов соответственно. Показано, что особенности фазовой диаграммы могут быть связаны с плотностью электронных состояний вблизи уровня Ферми электронов.

Электрохимия. 2024;60(3):235-241
pages 235-241 views

Исследование кальций-боросиликатной стеклокерамики в качестве герметика ТОТЭ

Жигачев А.О., Бредихин С.И., Агаркова Е.А., Матвеев Д.В.

Аннотация

В статье изучена возможность применения кальций-боросиликатной стеклокерамики с большим содержанием оксида бора в качестве герметика для твердооксидных топливных элементов. Материал состава 33 мол. % CaO, 21 мол. % B2O3, 46 мол. % SiO2 был рассмотрен как альтернатива существующим стекло- и стеклокерамическим герметикам на основе алюмосиликатов кальция и бария, которые имеют ограниченную адгезию к материалу биполярных пластин в твердооксидных топливных элементах. Проведенное исследование показало, что герметик указанного состава имеет температура размягчения около 920–930°С, что позволяет использовать его для заклейки батарей топливных элементов при температуре 925°С. Использование относительно невысокой температуры заклейки позволит избежать перегрева элемента при заклейке и предотвратит связанную с этим деградацию служебных характеристик. Исследованный герметик показал отличную адгезию к поверхности стали Crofer 22 APU, используемой в качестве материала биполярных пластин. Кроме того, полученный герметик был термомеханически совместим со сталью Crofer 22 APU и с электролитом на основе ZrO2.

Электрохимия. 2024;60(3):242-250
pages 242-250 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».