Performance analysis of proton exchange membrane fuel cell battery: effect of ambient temperature

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A model of a membrane electrode assembly is considered, taking into account the influence of various climatic conditions on power density. An analysis of the developed model is demonstrated in comparison with a proton exchange membrane fuel cell (PEMFC) stack operating at different ambient temperatures. The discrepancy between the obtained data (less than 10%) between the model and experiment in the temperature range from −10 to +10°С is shown. The optimal ambient temperature for battery operation was 10°C. The decrease in specific power with an increase in temperature for every 10°C above zero was 0.006–0.008 W/cm2, which is an insignificant change and can be compensated by using a buffer energy storage device.

Full Text

Restricted Access

About the authors

N. A. Faddeev

South Russian State Polytechnic University (NPI) named after M.I. Platov

Author for correspondence.
Email: nikita.faddeev@yandex.ru
Russian Federation, Novocherkassk

I. V. Vasyukov

South Russian State Polytechnic University (NPI) named after M.I. Platov

Email: nikita.faddeev@yandex.ru
Russian Federation, Novocherkassk

M. A. Belichenko

South Russian State Polytechnic University (NPI) named after M.I. Platov

Email: nikita.faddeev@yandex.ru
Russian Federation, Novocherkassk

A. V. Serik

South Russian State Polytechnic University (NPI) named after M.I. Platov

Email: nikita.faddeev@yandex.ru
Russian Federation, Novocherkassk

N. V. Smirnova

South Russian State Polytechnic University (NPI) named after M.I. Platov

Email: smirnova_nv@mail.ru
Russian Federation, Novocherkassk

References

  1. Kurnia, J.C., Chaedir, B.A., Sasmito, A.P., & Shamim, T., Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions, Appl. Energy, 2021, vol. 283, p. 116359.
  2. Zhao, C., Xing, S., Chen, M., Liu, W., & Wang, H., Optimal design of cathode flow channel for air-cooled PEMFC with open cathode, Intern. J. Hydrogen Energy, 2020, vol. 45, no. 35, p. 17771.
  3. Jeong, S.U., Cho, E.A., Kim, H.J., Lim, T.H., Oh, I.H., & Kim, S.H., A study on cathode structure and water transport in air-breathing PEM fuel cells, J. Power Sources, 2006, vol. 159, no. 2, p. 1089.
  4. Wu, J., Galli, S., Lagana, I., Pozio, A., Monteleone, G., Yuan, X. Z., & Wang, H., An air-cooled proton exchange membrane fuel cell with combined oxidant and coolant flow, J. Power Sources, 2009, vol. 188, no. 1, p. 199.
  5. Sasmito, A.P., Birgersson, E., Lum, K., & Mujumdar, A.S., Fan selection and stack design for open-cathode polymer electrolyte fuel cell stacks, Renew. Energy, 2012, vol. 37, no. 1, p. 325.
  6. Sasmito, A.P., Birgersson, E., and Mujumdar, A.S., A novel flow reversal concept for improved thermal management in polymer electrolyte fuel cell stacks, Intern. J. Therm. Sci., 2012, vol. 54, p. 242.
  7. Sasmito, A.P., Lum, K.W., Birgersson, E., & Mujumdar, A.S., Computational study of forced air-convection in open-cathode polymer electrolyte fuel cell stacks, J. Power Sources, 2010, vol. 195, no. 17, p. 5550.
  8. Shahsavari, S., Desouza, A., Bahrami, M., & Kjeang, E., Thermal analysis of air-cooled PEM fuel cells, Intern. J. Hydrogen Energy, 2012, vol. 37, no. 23, p. 18261.
  9. Akbari, M., Tamayol, A., and Bahrami, M., Thermal assessment of convective heat transfer in air-cooled PEMFC stacks: an experimental study, Energy Procedia, 2012, vol. 29, p. 1.
  10. Faddeev, N., Anisimov, E., Belichenko, M., Kuriganova, A., & Smirnova, N., Investigation of the Ambient Temperature Influence on the PEMFC Characteristics: Modeling from a Single Cell to a Stack, Processes, 2021, vol. 9, no. 12, p. 2117.
  11. Bhaiya, M., Putz, A., and Secanell, M., Analysis of non-isothermal effects on polymer electrolyte fuel cell electrode assemblies, Electrochim. Acta, 2014, vol. 147, p. 294.
  12. Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., Polymer electrolyte fuel cell model, J. Electrochem. Soc., 1991, vol. 138, no. 8, p. 2334.
  13. Natarajan, D. and Van Nguyen, T., A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors, J. Electrochem. Soc., 2001, vol. 148, no. 12, p. A1324.
  14. Plawsky, J. L., Transport Properties of Materials, Transport Phenomena Fundamentals. CRC Press, 2020. p. 81-128.
  15. Weber, A.Z., Borup, R.L., Darling, R.M., Das, P.K., Dursch, T.J., Gu, W., & Zenyuk, I.V., A critical review of modeling transport phenomena in polymer-electrolyte fuel cells, J. Electrochem. Soc., 2014, vol. 161, no. 12, p. F1254.
  16. Holzer, L., Pecho, O., Schumacher, J., Marmet, P., Stenzel, O., Büchi, F.N., & Münch, B., Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: effect of compression and anisotropy of dry GDL, Electrochim. Acta, 2017, vol. 227, p. 419.
  17. Holzer, L., Pecho, O., Schumacher, J., Marmet, P., Stenzel, O., Büchi, F.N., & Münch, B., Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part II: pressure-induced water injection and liquid permeability, Electrochim. Acta, 2017, vol. 241, p. 414.
  18. Vetter, R. and Schumacher, J. O., Experimental parameter uncertainty in proton exchange membrane fuel cell modeling. Part II: Sensitivity analysis and importance ranking, J. Power Sources, 2019, vol. 439, p. 126529.
  19. Vichard, L., Petrone, R., Harel, F., Ravey, A., Venet, P., & Hissel, D., Long term durability test of open-cathode fuel cell system under actual operating conditions, Energy Convers. Manag., 2020, vol. 212, p. 112813.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Test bench diagram.

Download (279KB)
3. Fig. 2. Volt-ampere and power characteristics at an ambient temperature of 10°C (a); dependence of specific power on ambient temperature.

Download (367KB)

Note

Публикуется по материалам IX Всероссийской конференции с международным участием “Топливные элементы и энергоустановки на их основе”, Черноголовка, 2022.


Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».