О фредгольмовости и разрешимости системы интегральных уравнений в задаче сопряжения для уравнения Гельмгольца

Обложка

Цитировать

Полный текст

Аннотация

Рассматривается скалярная трёхмерная краевая задача дифракции волны для уравнения Гельмгольца с условиями сопряжения, предполагающими наличие бесконечно тонкого материала на границе сред. Доказываются теоремы единственности и существования решения. Исходная задача сводится к системе интегральных уравнений по поверхности раздела сред. Приводятся расчётные формулы для системы линейных алгебраических уравнений, полученные после применения метода коллокации, и численные результаты решения задачи, когда область является шаром с определёнными условиями сопряжения.

Об авторах

Ю. Г Смирнов

Пензенский государственный университет

Email: smirnovyug@mail.ru
Пенза, Россия

О. В Кондырев

Пензенский государственный университет

Автор, ответственный за переписку.
Email: kow20002204@mail.ru
Пенза, Россия

Список литературы

  1. Ладыженская О.А. Краевые задачи математической физики. М., 1973.
  2. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. М., 1984.
  3. Nedelec J.-C. Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems. New York, 2001.
  4. Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М., 1987.
  5. Лерер А.М. Численная оценка погрешности метода возмущения при решении задачи об отражении электромагнитной волны от нелинейного графенового слоя // Радиотехника и электроника. 2022. T. 67. № 9. С. 855-858.
  6. Смирнов Ю.Г., Тихов С.В., Гусарова Е.В. О распространении электромагнитных волн в диэлектрическом слое, покрытом графеном // Изв. вузов. Поволжский регион. Физ.-мат. науки. 2022. № 3. С. 11-18.
  7. Mikhailov S.A. Quantum theory of the third-order nonlinear electrodynamic effects of graphene // Phys. Rev. B. 2016. V. 93. № 8. Art. 085403.
  8. Hanson G.W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene // J. of Appl. Phys. 2008. V. 103. № 6. Art. 064302.
  9. Ильинский А.С., Кравцов В.В., Свешников А.Г. Математические модели электродинамики и акустики. М., 1991.
  10. Colton D., Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. New York, 2013.
  11. Vainikko G. Multidimensional Weakly Singular Integral Equation. Berlin; Heidelberg, 1993.
  12. Вайникко Г.М., Карма О.О. О сходимости приближённых методов решения линейных и нелинейных операторных уравнений // Журн. вычислит. математики и мат. физики. 1974. Т. 14. № 4. С. 828-837.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».